Abstract

A highly sensitive fiber optic current sensor using terbium doped fiber is presented. The Verdet constant of the terbium doped fiber at 1300nm is found to be 19.5μrad/A using both a polarimetric and interferometric type sensor. Measurements on a Sagnac-loop sensor using 10cm of terbium doped fiber placed inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. Extrapolations of our measurements show that in a practical setup with Tb fiber wrapped around a current carrying wire, the optimal configuration is a 0.5m piece of Tb fiber with a noise limit of 22mA/√Hz. This sensor is promising for current sensing applications that require high sensitivity and small size, weight, and power.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel configuration for an enhanced and compact all-fiber Faraday rotator with matched birefringence

Sagie Asraf, Yoav Sintov, and Zeev Zalevsky
Opt. Express 25(16) 18643-18655 (2017)

Diamagnetic tellurite glass and fiber based magneto-optical current transducer

Qiuling Chen, Qiuhua Ma, Hui Wang, and Qiuping Chen
Appl. Opt. 54(29) 8664-8669 (2015)

High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity

Hongying Zhang, Yongkang Dong, Jesse Leeson, Liang Chen, and Xiaoyi Bao
Appl. Opt. 50(6) 924-929 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
    [Crossref]
  2. K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
    [Crossref]
  3. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
    [Crossref]
  4. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
    [Crossref]
  5. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  6. A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
    [Crossref]
  7. N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
    [Crossref]
  8. R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [Crossref]
  9. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [PubMed]
  10. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm),” Opt. Express 18(12), 12191–12196 (2010).
    [Crossref] [PubMed]
  11. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  12. M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  13. S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
    [Crossref] [PubMed]
  14. S. Srinivasan and J. E. Bowers, “Integrated high sensitivity hybrid silicon magnetometer,” IEEE Photonics Technol. Lett. 26(13), 1321–1324 (2014).
    [Crossref]
  15. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  16. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [Crossref]
  17. P. A. Nicati and P. Robert, “Stabilised current sensor using Sagnac interferometer,” J. Phys. E Sci. Instrum. 21(8), 791–796 (1988).
    [Crossref]
  18. C. J. Kay, “Serrodyne modulator in a fibre-optic gyroscope,” in IEE Proceedings J. Optoelectronics (IET, 1985) pp. 259–264.
    [Crossref]
  19. G. Frosio and R. Dändliker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33(25), 6111–6122 (1994).
    [Crossref] [PubMed]

2014 (2)

S. Srinivasan and J. E. Bowers, “Integrated high sensitivity hybrid silicon magnetometer,” IEEE Photonics Technol. Lett. 26(13), 1321–1324 (2014).
[Crossref]

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
[Crossref] [PubMed]

2013 (2)

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

2012 (1)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

2010 (2)

2005 (1)

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

2002 (1)

1996 (1)

A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
[Crossref]

1995 (1)

1994 (1)

1991 (1)

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

1989 (1)

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

1988 (1)

P. A. Nicati and P. Robert, “Stabilised current sensor using Sagnac interferometer,” J. Phys. E Sci. Instrum. 21(8), 791–796 (1988).
[Crossref]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

1979 (1)

Ballato, J.

Baptista, J. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Bauters, J. F.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Blumenthal, D.

Bohnert, K.

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Bowers, J. E.

S. Srinivasan and J. E. Bowers, “Integrated high sensitivity hybrid silicon magnetometer,” IEEE Photonics Technol. Lett. 26(13), 1321–1324 (2014).
[Crossref]

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
[Crossref] [PubMed]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Brandle, H.

Brändle, H.

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

Dändliker, R.

Davenport, M. L.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Day, G. W.

A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
[Crossref]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Doylend, J. K.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Etzel, S. M.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Frazão, O.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Frosio, G.

Gabus, P.

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Guggenbach, P.

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

Heck, M. J.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

Huang, Y.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Jain, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jiang, S.

Jorge, P.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Kurczveil, G.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Laming, R.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Liu, W.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Marciante, J. R.

Martins, H.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Moreira, R.

Nascimento, I.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Nehring, J.

Nicati, P. A.

P. A. Nicati and P. Robert, “Stabilised current sensor using Sagnac interferometer,” J. Phys. E Sci. Instrum. 21(8), 791–796 (1988).
[Crossref]

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

Payne, D. N.

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Peng, N.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Ren, Z. B.

A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
[Crossref]

Ribeiro, A. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Robert, P.

P. A. Nicati and P. Robert, “Stabilised current sensor using Sagnac interferometer,” J. Phys. E Sci. Instrum. 21(8), 791–796 (1988).
[Crossref]

Rose, A. H.

A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
[Crossref]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Santos, J. L.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

Silva, R. M.

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Simon, A.

Snitzer, E.

Srinivasan, S.

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
[Crossref] [PubMed]

S. Srinivasan and J. E. Bowers, “Integrated high sensitivity hybrid silicon magnetometer,” IEEE Photonics Technol. Lett. 26(13), 1321–1324 (2014).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Sun, L.

Tang, D.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Tang, Y.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
[Crossref] [PubMed]

Wang, L.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wang, S.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wen, T.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Zuo, Q.

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Sci. (1)

R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazão, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(4), 602–628 (2012).
[Crossref]

Electron. Lett. (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–908 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Srinivasan and J. E. Bowers, “Integrated high sensitivity hybrid silicon magnetometer,” IEEE Photonics Technol. Lett. 26(13), 1321–1324 (2014).
[Crossref]

N. Peng, Y. Huang, S. Wang, T. Wen, W. Liu, Q. Zuo, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

J. Lightwave Technol. (4)

R. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

A. H. Rose, Z. B. Ren, and G. W. Day, “Twisting and annealing optical fiber for current sensors,” J. Lightwave Technol. 14(11), 2492–2498 (1996).
[Crossref]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

J. Phys. E Sci. Instrum. (1)

P. A. Nicati and P. Robert, “Stabilised current sensor using Sagnac interferometer,” J. Phys. E Sci. Instrum. 21(8), 791–796 (1988).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

K. Bohnert, P. Gabus, H. Brändle, and P. Guggenbach, “Fiber-optic dc current sensor for the electro-winning industry,” Proc. SPIE 5855, 210–213 (2005).
[Crossref]

Other (2)

C. J. Kay, “Serrodyne modulator in a fibre-optic gyroscope,” in IEE Proceedings J. Optoelectronics (IET, 1985) pp. 259–264.
[Crossref]

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the polarization detection scheme. The sensor consists of a laser, the Tb fiber chain, a Faraday rotator, an in-line polarization beam splitter (PBS), as well as a balanced photodetector. (b) Picture of the 14cm long, 710 turn solenoid coil used to produce the magnetic field.
Fig. 2
Fig. 2 (a) Individual powers received at the detector from the two orthogonal polarizations. (b) Balanced detection cancels out any fluctuations in power. (c) The current sensor can be improved further by tracking the exact polarization shift in the absence of magnetic field.
Fig. 3
Fig. 3 Schematic of the Sagnac-loop current sensor.
Fig. 4
Fig. 4 (a) The Faraday signal after applying RF gain. Measurements show that there is an offset of roughly −1.65mA in the system. (b) The Faraday signal measured over a much wider range of currents, after correcting the −1.65mA offset. Measurements exactly follow the predicted 10dB/dec slope until the applied current is ~0.1mA, which is the minimum detactable current for the system.
Fig. 5
Fig. 5 (a) Measurements of the detected Faraday signal on the ESA for three applied currents. (b) Long term stability plot of the OCS over 15 hours of measured data.
Fig. 6
Fig. 6 (a) Conversion from our experimental setup (top left) to a more practical current sensing setup with a straight wire and loops of fiber (top right). To keep the same optical loss, we keep the same length of fiber (bottom right). Now, we can extrapolate the results to multiple loops of fiber (bottom left). (b) Extrapolation of FOCS performance vs length of Tb fiber given our system noise floor and measured propogation loss for various ASE output powers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P BD = P 0 cos 2 (θ+ θ f ) P 0 sin 2 (θ+ θ f ) P 0 cos 2 (θ+ θ f )+ P 0 sin 2 (θ+ θ f ) =cos(2(θ+ θ f )).
P BD =cos(2θ)cos(2 θ f )sin(2θ)sin(2 θ f )(2 θ f )
V Faraday ( θ f )= P 0 η J 1 (1.8)sin(2 θ f )

Metrics