Abstract

The large field enhancement that can be achieved in high quality factor and small mode volume photonic crystal microcavities leads to strengthened nonlinear interactions. However, the frequency shift dynamics of the cavity resonance under a pulsed excitation, which is driven by nonlinear refractive index change, tends to limit the coupling efficiency between the pulse and the cavity. As a consequence, the cavity enhancement effect cannot last for the entire pulse duration, limiting the interaction between the pulse and the intra-cavity material. In order to preserve the benefit of light localization throughout the pulsed excitation, we report the first experimental demonstration of coherent excitation of a nonlinear microcavity, leading to an enhanced intra-cavity nonlinear interaction. We investigate the nonlinear behavior of a Silicon-based microcavity subject to tailored positively chirped pulses, enabling to increase the free carrier density generated by two-photon absorption by up to a factor of 2.5 compared with a Fourier-transform limited pulse excitation of equal energy. It is accompanied by an extended frequency blue-shift of the cavity resonance reaching 19 times the linear cavity bandwidth. This experimental result highlights the interest in using coherent excitation to control intra-cavity light-matter interactions and nonlinear dynamics of microcavity-based optical devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced nonlinear optics in photonic-crystal microcavities

Jorge Bravo-Abad, Alejandro Rodriguez, Peter Bermel, Steven G. Johnson, John D. Joannopoulos, and Marin Soljačić
Opt. Express 15(24) 16161-16176 (2007)

Phase sensitive properties and coherent manipulation of a photonic crystal microcavity

Wadim Quiring, Björn Jonas, Jens Förstner, Ashish K. Rai, Dirk Reuter, Andreas D. Wieck, and Artur Zrenner
Opt. Express 24(18) 20672-20684 (2016)

Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field

Wen Zhang, Zhongyuan Yu, Yumin Liu, and Yiwei Peng
J. Opt. Soc. Am. B 31(2) 296-301 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
    [Crossref]
  2. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
    [Crossref]
  3. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
    [Crossref] [PubMed]
  4. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
    [Crossref]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [Crossref]
  6. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
    [Crossref]
  7. C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
    [Crossref]
  8. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a gainp photonic crystal fabryperot resonator,” Opt. Express 20, 8524–8534 (2012).
    [Crossref] [PubMed]
  9. Z. K. Ioannidis, P. M. Radmore, and I. P. Giles, “Dynamic response of an all-fiber ring resonator,” Opt. Lett. 13, 422–424 (1988).
    [Crossref] [PubMed]
  10. Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073–2080 (2008).
    [Crossref]
  11. D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
    [Crossref]
  12. W. V. Sorin and R. S. Tucker, “Optical pulse storage, shaping, and wavelength conversion in resonators with controllable input coupling,” J. Lightwave Technol. 27, 2587–2594 (2009).
    [Crossref]
  13. S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010).
    [Crossref]
  14. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [Crossref]
  15. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).
  16. S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
    [Crossref] [PubMed]
  17. P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
    [Crossref]
  18. J. Oden, S. Trebaol, P. Delaye, and N. Dubreuil, “Coherent excitation of a nonlinear microcavity,” J. Eur. Opt. Soc.-Rapid 8, 13046 (2013).
    [Crossref]
  19. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
    [Crossref]
  20. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
    [Crossref]
  21. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [Crossref]
  22. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  23. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [Crossref] [PubMed]
  24. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 μ m region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
    [Crossref]
  25. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  26. M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
    [Crossref]
  27. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25, 2539–2546 (2007).
    [Crossref]
  28. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
    [Crossref] [PubMed]
  29. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
    [Crossref]
  30. C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in “Progress in Optics,”, vol. 20, E. Wolf, ed. (North–Holland, 1983), pp. 65–153.
  31. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008), chap. 6, pp. 245–300, 2nd ed.
  32. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref] [PubMed]
  33. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a gaas photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
    [Crossref] [PubMed]

2014 (1)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

2013 (2)

P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
[Crossref]

J. Oden, S. Trebaol, P. Delaye, and N. Dubreuil, “Coherent excitation of a nonlinear microcavity,” J. Eur. Opt. Soc.-Rapid 8, 13046 (2013).
[Crossref]

2012 (3)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a gainp photonic crystal fabryperot resonator,” Opt. Express 20, 8524–8534 (2012).
[Crossref] [PubMed]

M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
[Crossref]

2010 (2)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010).
[Crossref]

2009 (3)

2008 (1)

2007 (3)

2006 (3)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

2005 (3)

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref] [PubMed]

2004 (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
[Crossref]

2001 (2)

E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[Crossref]

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

2000 (1)

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).

1998 (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

1992 (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
[Crossref] [PubMed]

1988 (1)

1987 (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 μ m region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

Agrawal, G. P.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Aziz Bouchene, M.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Barclay, P.

Baron, A.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Blanchet, V.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Bravo-Abad, J.

Cao, Q.

CastellanosMuñoz, M.

M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
[Crossref]

Cestier, I.

Charvolin, T.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

Cojocaru, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in “Progress in Optics,”, vol. 20, E. Wolf, ed. (North–Holland, 1983), pp. 65–153.

Combrie, S.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Combrié, S.

de Beauvoir, B.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

De Rossi, A.

Degert, J.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Delaye, P.

Dubreuil, N.

Dumeige, Y.

Eckhouse, V.

Eich, M.

M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
[Crossref]

Eisenstein, G.

Fan, S.

Féron, P.

Foster, M. A.

Frey, R.

Froehly, C.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in “Progress in Optics,”, vol. 20, E. Wolf, ed. (North–Holland, 1983), pp. 65–153.

Gaeta, A. L.

Ghisa, L.

Giles, I. P.

Girard, B.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Hadji, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

Heuck, M.

P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
[Crossref]

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

Hugonin, J.-P.

Husko, C.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Ioannidis, Z. K.

Joannopoulos, J. D.

J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25, 2539–2546 (2007).
[Crossref]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
[Crossref]

John, S.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[Crossref]

Johnson, S. G.

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
[Crossref] [PubMed]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Lalanne, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[Crossref]

Lehoucq, G.

Letartre, X.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Levenson, A.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Lin, Q.

Lipson, M.

Manolatou, C.

Martinez, O.

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 μ m region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Monnier, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Mørk, J.

P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
[Crossref]

Nguyên, T. K. N.

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

Oden, J.

J. Oden, S. Trebaol, P. Delaye, and N. Dubreuil, “Coherent excitation of a nonlinear microcavity,” J. Eur. Opt. Soc.-Rapid 8, 13046 (2013).
[Crossref]

Painter, O.

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Petrov, A. Y.

M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
[Crossref]

Peyrade, D.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

Picard, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

Povinelli, M. L.

S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010).
[Crossref]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
[Crossref] [PubMed]

Radmore, P. M.

Raineri, F.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Raj, R.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

Roosen, G.

Rossi, A. D.

Ryasnyanskiy, A.

Sandhu, S.

S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010).
[Crossref]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

Schmidt, B. S.

Seassal, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

Sharping, J. E.

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Silberstein, E.

Soljacic, M.

J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25, 2539–2546 (2007).
[Crossref]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
[Crossref]

Sorin, W. V.

Srinivasan, K.

Stock, S.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

Tavernier, H.

Tran, Q. V.

Trebaol, S.

TrøstKristensen, P.

P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
[Crossref]

Tucker, R. S.

Turner, A. C.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in “Progress in Optics,”, vol. 20, E. Wolf, ed. (North–Holland, 1983), pp. 65–153.

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

Viktorovitch, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

Vujic, D.

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[Crossref]

Weiner, A.

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).

Wong, C. W.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Xu, Q.

Zamith, S.

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[Crossref]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional inp-based photonic crystal,” Appl. Phys. Lett. 85, 1880–1882 (2004).
[Crossref]

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

S. Sandhu, M. L. Povinelli, and S. Fan, “Enhancing optical switching with coherent control,” Appl. Phys. Lett. 96, 231108 (2010).
[Crossref]

P. TrøstKristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett. 102, 041107 (2013).
[Crossref]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89, 171121 (2006).
[Crossref]

M. CastellanosMuñoz, A. Y. Petrov, and M. Eich, “All-optical on-chip dynamic frequency conversion,” Appl. Phys. Lett. 101, 141119 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 μ m region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

J. Eur. Opt. Soc.-Rapid (1)

J. Oden, S. Trebaol, P. Delaye, and N. Dubreuil, “Coherent excitation of a nonlinear microcavity,” J. Eur. Opt. Soc.-Rapid 8, 13046 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat Photon (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat Photon 4, 477–483 (2010).
[Crossref]

Nature (2)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Nature Mater. (1)

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nature Mater. 3, 211–219 (2004).
[Crossref]

Nature Photon. (2)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical ram based on nanocavities,” Nature Photon. 6, 248–252 (2012).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nature Photon. 8, 474–481 (2014).
[Crossref]

New Journal of Physics (1)

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge soi waveguide,” New Journal of Physics 8, 204 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

D. Vujic and S. John, “Pulse reshaping in photonic crystal waveguides and microcavities with kerr nonlinearity: Critical issues for all-optical switching,” Phys. Rev. A 72, 013807 (2005).
[Crossref]

Phys. Rev. Lett. (2)

S. Zamith, J. Degert, S. Stock, B. de Beauvoir, V. Blanchet, M. Aziz Bouchene, and B. Girard, “Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system,” Phys. Rev. Lett. 87, 033001 (2001).
[Crossref] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500 (1992).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000).

Other (2)

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in “Progress in Optics,”, vol. 20, E. Wolf, ed. (North–Holland, 1983), pp. 65–153.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008), chap. 6, pp. 245–300, 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Linear transmission measurement of the Fabry-Perot type microcavity (blue solid line). The Lorentzian fit of the low-pass filtered linear transmission (black line) plotted in red solid line gives a quality factor Q = 7275. Inset: SEM picture of the Silicon microcavity made of two-symmetric Bragg mirrors engraved on a SOI ridge waveguide.
Fig. 2
Fig. 2 (a) Experimental set-up where femtosecond pulses of an Er-doped amplifier fiber laser are sent into a grating-based pulse shaper prior to their injection into the sample by means of a microscope objective. (b) Measured optical spectrum of the shaped pulse. (c) Measured (blue line) and simulated (red line) autocorrelation traces of the shaped pulse for ϕ(2) = 0. (d) Evolution of the full width at half maximum (FWHM) of the autocorrelation traces recorded for different stage positions of the pulse shaper (open circles) and comparison with the calculated values for a linearly chirped rectangular shape pulse spectrum (red line). (e) Relation between the dispersion coefficient and the stage position (open circles) with a linear fit (red line).
Fig. 3
Fig. 3 Evolution of the transmission spectra of the cavity measured with varying the chirped pulse excitation from ϕ (2) = −3 to +3.5 ps2. The spectral line width of the incident pulse is plotted in red line. The transmission spectrum measured at low incident power is shown in grey line.
Fig. 4
Fig. 4 Measured incident (dashed line) and transmission spectra, plotted in linear scale (a) and in dBm scale (b) at low energy (grey line, ×5 in linear scale) and at 5pJ incident energy for various chirped pulse excitation: Fourier-Transform limited pulses (blue line), ϕ (2) = −1.2 ps2 (green curve), ϕ (2) = +1.2 ps2 (red curve).
Fig. 5
Fig. 5 Measured cavity blue-shift achieved for the chirp coefficients ϕ (2) reported in Fig. 3. The shift in wavelength is measured with respect to the linear cavity resonance.
Fig. 6
Fig. 6 Simulated transmission spectra of the cavity under chirped pulse excitations varying from ϕ (2) = −3 to +3.5 ps2. The spectral linewidth of the incident pulse is plotted in red line. The transmission spectrum calculated at low incident power is shown in grey line.
Fig. 7
Fig. 7 Pulse shaper scheme: 3D (a) and top-view (b). It comprises a diffraction grating, a doublet lens, a mirror located a the focal plane of the lens and a roof prism. The slit set in front of the mirror serves to adjust the spectral linewidth of the outgoing pulse. The 2nd order dispersion coefficient of the outgoing pulse is introduced by translating the lens-mirror-slit set-up using a stage position.
Fig. 8
Fig. 8 (a) Superimposed traces of 25 transmission spectra measured through a SOI ridge waveguide, at low input power, and for ϕ (2) comprised between +3 and −3 ps2. (b) Transmission spectra measured at low power (grey line, 20 times magnified) and at Pin =9 mW for ϕ (2) = 0 (green line), 1 (red solid line) and 3 ps2 (red dashed line). For increasing input power, variation of Pout (c) and Pin/Pout (d) with the related linear fit (red line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d u d t = i ω 0 ( 1 n 2 c n 2 V K | u ( t ) | 2 σ r n N ( t ) ) u ( t ) ( ω 0 2 Q + β TPA c 2 2 n 2 V K | u ( t ) | 2 + σ a c 2 n N ( t ) ) u ( t ) + ω 0 Q e s i n c ( t )
d N d t = 1 τ c N ( t ) + β TPA 2 h ¯ ω 0 c 2 n 2 V FC 2 | u ( t ) | 4 ,

Metrics