Abstract

An optical filter array consisting of vertical narrow-band Fabry-Pérot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths (Δλ/λ = 5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. Operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

Yu Horie, Amir Arbabi, Ehsan Arbabi, Seyedeh Mahsa Kamali, and Andrei Faraon
Opt. Express 24(11) 11677-11682 (2016)

Subwavelength grating filtering devices

Junjia Wang, Ivan Glesk, and Lawrence R. Chen
Opt. Express 22(13) 15335-15345 (2014)

High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs

Eric Bisaillon, Dawn Tan, Behnam Faraji, Andrew G. Kirk, Lukas Chrostowski, and David V. Plant
Opt. Express 14(7) 2573-2582 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
    [Crossref]
  2. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
    [Crossref] [PubMed]
  3. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18, 102–107 (2010).
    [Crossref] [PubMed]
  4. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
    [Crossref]
  5. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632–634 (2007).
    [Crossref] [PubMed]
  6. X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
    [Crossref]
  7. J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
    [Crossref]
  8. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight,” J. Lightwave Technol. 24, 2442–2449 (2006).
    [Crossref]
  9. C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
    [Crossref]
  10. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
    [Crossref]
  11. C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
    [Crossref]
  12. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
    [Crossref]
  13. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous Layer Models for High-Spatial-Frequency Dielectric Surface-Relief Gratings - Conical Diffraction and Antireflection Designs,” Appl. Opt. 33, 2695–2706 (1994).
    [Crossref] [PubMed]
  14. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
    [Crossref] [PubMed]
  15. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
    [Crossref] [PubMed]
  16. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  17. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12449 (2007).
    [Crossref] [PubMed]
  18. A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
    [Crossref]
  19. Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
    [Crossref]
  20. M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39, 6958–6961 (2014).
    [Crossref] [PubMed]
  21. C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
    [Crossref]
  22. J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
    [Crossref] [PubMed]

2015 (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

2014 (1)

2013 (2)

C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

2012 (4)

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888–10895 (2012).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2011 (3)

2010 (5)

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18, 102–107 (2010).
[Crossref] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

2009 (1)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

2007 (2)

2006 (1)

2004 (1)

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

1994 (1)

Adibi, A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Albrecht, A.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Bakir, B. B.

C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Bartels, M.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Beausoleil, R. G.

J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Benbakir, B.

Bordel, D.

Boutami, S.

Brundrett, D. L.

Campopiano, S.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Chamanzar, M.

Chang-Hasnain, C. J.

Chavel, P.

Chen, L.

Chen, X.

Chuwongin, S.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Cusano, A.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Deng, Y.

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Eftekhar, A. A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Englund, D.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Fattal, D.

J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Fedeli, J.-M.

Fiorentino, M.

J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Gaylord, T. K.

Glytsis, E. N.

Han, K.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Hillmer, H.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Hornung, M.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Huang, M. C.

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Hugonin, J. P.

Karagodsky, V.

Krauss, T. F.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Kyotoku, B. B. C.

Lalanne, P.

Leclercq, J. L.

Letartre, X.

Li, J.

J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[Crossref] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Li, M.

Li, Q.

Lipson, M.

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Lu, W.

Ma, Z.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Magnusson, R.

Mai, H. H.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Mateus, C. F.

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

Meinl, T.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Menezo, S.

C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Momeni, B.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Neureuther, A. R.

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

O’Faolain, L.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Olivier, N.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Qiang, Z.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Regreny, P.

Ricciardi, A.

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

Rojo-Romeo, P.

Sciancalepore, C.

C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]

Seassal, C.

Sedgwick, F. G.

Seo, S.-W.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Shah Hosseini, E.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Shokooh-Saremi, M.

Soltani, M.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Song, F.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Viktorovitch, P.

Wang, H.

Wang, S.-W.

Wang, X.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Woidt, C.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Xia, C.

Xia, Z.

Xiao, J.

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

Yang, H.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Yegnanarayanan, S.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref] [PubMed]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Zhang, T.

Zhao, D.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Zheng, W.

Zhou, W.

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Sciancalepore, B. B. Bakir, and S. Menezo, “III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

IEEE Photonics J. (1)

A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J. 2, 696–702 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. Zhou, “Design of Fano Broadband Reflectors on SOI,” IEEE Photonics Technol. Lett. 22, 1108–1110 (2010).
[Crossref]

C. F. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

J. Xiao, F. Song, K. Han, and S.-W. Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[Crossref]

J. Nanophotonics (1)

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophotonics 3, 031001 (2009).
[Crossref]

Microelectron. Eng. (1)

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: Template fabrication, application in Fabry-Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 1–6 (2015).
[Crossref]

Nat. Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Li, D. Fattal, M. Fiorentino, and R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of narrowband wavelength filter array composed of vertical FP resonators realized using two-layers of SWG reflectors separated by a spacer layer. When broadband input light is illuminated, the spectrum is filtered out by the narrowband filters with different central wavelengths, and the optical powers detected by the underlying photodetector pixels are used to reconstruct the original spectral information.

Fig. 2
Fig. 2

(a) Simulated reflectivity contour map as a function of duty cycle of SWGs and wavelength, for the α-Si on SiO2 1D SWGs with 900nm period and SU-8 polymer cladding for the normally incident TE-polarized light (i.e. electric field parallel to the grating bars) and (b) the corresponding reflection phase contour map.

Fig. 3
Fig. 3

(a) Simulated transmission spectra of a normally incident plane wave for a set of narrowband filters. (b) Angular dependence of the simulated transmission spectrum of one of the filters with an azimuthal angle of θ = 45° and various polar angles ϕ. (c) Simulated transmission spectra of one of the filters when illuminated with Gaussian beams with different beam waists w0.

Fig. 4
Fig. 4

(a) Schematic of a narrowband filter made of two-layers of SWG reflectors in the SU-8/α-Si/SiO2 system. (b) Cross-sectional scanning electron microscope image of a fabricated narrowband filters.

Fig. 5
Fig. 5

The measured transmission spectra of a set of fabricated narrowband filters, where the grating duty cycle and period are controlled to obtain a sets of narrowband filters with different central wavelengths. The corresponding simulated transmission spectra for a normally incident plane wave illumination for the corresponding sets of narrowband filters are also shown in dotted lines.

Metrics