Abstract

Time-lenses provide a promising platform for novel, broadband optical signal processing. However, in order to minimize system penalties, design constraints must be adequately taken into account. We investigate the impact of third-order-dispersion and nonlinear distortion on the performance of time-lens-based communication systems for the first time. Here, we propose a novel application of time-lenses - temporal compression and time-division multiplexing of optical OFDM channels, to provide a 1 Tb/s superchannel. Time-lens system performance degradations are investigated in our proposed system and the results are applicable to all four wave mixing based time-lens systems. Our work can help to optimize time-lens based communication systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical wavelength conversion for mode division multiplexed superchannels

Jiaxin Gong, Jing Xu, Ming Luo, Xiang Li, Ying Qiu, Qi Yang, Xinliang Zhang, and Shaohua Yu
Opt. Express 24(8) 8926-8939 (2016)

Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT

Dong Yang and Shiva Kumar
Opt. Express 17(20) 17214-17226 (2009)

Folded orthogonal frequency division multiplexing

Bill Corcoran, Chen Zhu, Binhuang Song, and Arthur J. Lowery
Opt. Express 24(26) 29670-29681 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).
    [Crossref] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
    [Crossref] [PubMed]
  3. B. Li, C. Zhang, J. Kang, X. Wei, S. Tan, and K. K. Y. Wong, “109 MHz optical tomography using temporal magnification,” Opt. Lett. 40(13), 2965–2968 (2015).
    [Crossref] [PubMed]
  4. N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
    [Crossref]
  5. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
    [Crossref] [PubMed]
  6. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
    [Crossref]
  7. E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
    [Crossref]
  8. Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
    [Crossref]
  9. H. Hu, J. L. Areal, H. C. H. Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Tu.3.K.4.
    [Crossref]
  10. H. Hu, J. L. Areal, E. Palushani, M. Galili, A. T. Clausen, M. S. Berger, L. K. Oxenløwe, and P. Jeppesen, “Synchronization and NRZ-to-RZ format conversion of 10 G Ethernet packet based on a time lens,” in Photonics in Switching, OSA Technical Digest (Optical Society of America, 2010), paper PMD2.
  11. T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol. 24(7), 2530–2540 (2006).
    [Crossref]
  12. A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
    [Crossref] [PubMed]
  13. Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
    [Crossref]
  14. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
    [Crossref]
  15. C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
    [Crossref]
  16. A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
    [Crossref]
  17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  18. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
    [Crossref]
  19. B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A 11(12), 3229–3234 (1994).
    [Crossref]
  20. H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), Geneva, Switzerland, paper Mo.1.A.5.
    [Crossref]
  21. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref] [PubMed]
  22. P. Guan, D. Kong, K. M. Røge, H. C. H. Mulvad, M. Galili, and L. K. Oxenløwe, “Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation,” in Optical Fiber Communication Conference, Technical Digest (optical Society of America, 2014), paper W4F.1.
    [Crossref]
  23. V. Torres-Company, J. Lancis, and P. Andrés, “Spectral imaging system for scaling the power spectrum of optical waveforms,” Opt. Lett. 32(19), 2849–2851 (2007).
    [Crossref] [PubMed]
  24. E. Palushani, H. C. H. Mulvad, D. Kong, P. Guan, M. Galili, and L. K. Oxenløwe, “All-optical OFDM demultiplexing by spectral magnification and band-pass filtering,” Opt. Express 22(1), 136–144 (2014).
    [Crossref] [PubMed]
  25. A. W. Lohmann and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31(29), 6212–6219 (1992).
    [Crossref] [PubMed]
  26. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
    [Crossref] [PubMed]
  27. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
    [Crossref] [PubMed]
  28. A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
    [Crossref] [PubMed]
  29. OFS datasheet, “HNLF zero-slope, HNLF zero-slope highly non-linear fiber modules,” http://fiber-optic-catalog.ofsoptics.com/item/optical–fibers/highly-nonlinear-fiber-optical-fibers1/hnlf-zero-slope-highly-non-linear-fiber-modules (OFS, 2015)

2015 (1)

2014 (2)

2013 (1)

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

2012 (2)

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

2011 (3)

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

2009 (4)

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[Crossref] [PubMed]

2008 (4)

2007 (1)

2006 (2)

2001 (1)

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

1994 (1)

1992 (1)

1989 (1)

Andrés, P.

Armstrong, J.

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

Bao, H.

Bennett, C. V.

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

Berger, N. K.

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

Clausen,

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Clausen, A. T.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Du, L. B.

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Galili, M.

E. Palushani, H. C. H. Mulvad, D. Kong, P. Guan, M. Galili, and L. K. Oxenløwe, “All-optical OFDM demultiplexing by spectral magnification and band-pass filtering,” Opt. Express 22(1), 136–144 (2014).
[Crossref] [PubMed]

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

Grüner-Nielsen, L.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Guan, P.

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Hao Hu, L. K.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Hirooka, T.

Hu, H.

Huang, B.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Huo, L.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Hvam, J. M.

Jeppesen, P.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Ji, H.

Kang, J.

Kolner, B. H.

Kong, D.

Kuzucu, O.

Lancis, J.

Li, B.

Li, W.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Li, Y.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Lillieholm, M.

Lipson, M.

Liu, D.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Lohmann, A. W.

Lou, C.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Lowery, A. J.

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
[Crossref] [PubMed]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

Mendlovic, D.

Mulvad, H. C. H.

Nakazawa, M.

Nazarathy, M.

Okawachi, Y.

Oxenlowe, A. T.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Oxenløwe, L. K.

Palushani, E.

Pu, M.

Salem, R.

Schröder, J.

Shieh, W.

Tan, S.

Tang, Y.

Torres-Company, V.

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
[Crossref] [PubMed]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Wang, C.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Wang, Q.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Wei, X.

Wong, K. K. Y.

Xing, Y.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Yang, K.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Ye, F.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Yvind, K.

Zhang, C.

Appl. Opt. (1)

Electron. Lett. (2)

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

Opt. Lett. (4)

Other (5)

P. Guan, D. Kong, K. M. Røge, H. C. H. Mulvad, M. Galili, and L. K. Oxenløwe, “Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation,” in Optical Fiber Communication Conference, Technical Digest (optical Society of America, 2014), paper W4F.1.
[Crossref]

OFS datasheet, “HNLF zero-slope, HNLF zero-slope highly non-linear fiber modules,” http://fiber-optic-catalog.ofsoptics.com/item/optical–fibers/highly-nonlinear-fiber-optical-fibers1/hnlf-zero-slope-highly-non-linear-fiber-modules (OFS, 2015)

H. Hu, J. L. Areal, H. C. H. Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Tu.3.K.4.
[Crossref]

H. Hu, J. L. Areal, E. Palushani, M. Galili, A. T. Clausen, M. S. Berger, L. K. Oxenløwe, and P. Jeppesen, “Synchronization and NRZ-to-RZ format conversion of 10 G Ethernet packet based on a time lens,” in Photonics in Switching, OSA Technical Digest (Optical Society of America, 2010), paper PMD2.

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), Geneva, Switzerland, paper Mo.1.A.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Analogue between physical lens and time-lens. Input and Output dispersions act as free-space diffraction. Temporal chirp plays the role of spatial chirp.

Fig. 2
Fig. 2

Schematic of a time-lens imaging system. The first time-lens converts OFDM to Nyquist-OTDM, and the second time-lens converts the signal to spectrally magnified OFDM.

Fig. 3
Fig. 3

Schematic of Time Division Multiplexing of time-lens compressed OFDM streams. Two OFDM channels are separately compressed by time-lenses and then time-interleaved.

Fig. 4
Fig. 4

Simulation setup of time division multiplexing five 5-subcarrier OFDM tributaries with quadrature phase-shift keying (QPSK).

Fig. 5
Fig. 5

(Top) optical spectra after the first time-lens; (Bottom) optical spectra after the second time-lens.

Fig. 6
Fig. 6

(Top)Waveform of original signal; (Middle) Waveform of signal compressed by time-lenses; (Bottom) Waveform of the time division multiplexed five OFDM channels.

Fig. 7
Fig. 7

Eye diagram of an OFDM subcarrier at receiver on I phase.

Fig. 8
Fig. 8

Q vs. OSNR of TDM of 5 time-lenses compressed OFDM channels.

Fig. 9
Fig. 9

Q factor vs. system parameters (a) Q factor vs. signal average power. (b) Q factor vs. Idler 1 power. (с) Q factor vs. Pump 1 average power. (d) Q factor vs. Pump 2 average power. Red represents Idler 2 average power. Blue represents Q factor.

Fig. 10
Fig. 10

Spectra at output of DF-HNLF A (left) and DF-HNLF B (right) under the conditions (a) and (b): 16-dBm signal power, 23-dBm Pump 1 power, 28-dBm Pump 2 power; (c) and (d): 0-dBm signal power, 33-dBm Pump 1 power, 28-dBm Pump 2 power; (e) and (f): 0-dBm signal power, 33-dBm Pump 1 power, 28-dBm Pump 2 power, with Idler 1 attenuated by 14 dB; (g) and (h): 0-dBm signal power, 23-dBm Pump 1 power, and 40-dBm Pump 2 power.

Fig. 11
Fig. 11

Q vs. OSNR of 5-channel TDM of OFDM channels. The dispersion slopes of Fiber 3 and Fiber 5 are set to 0.092 ps/nm2/km, and the dispersion slope of DF-HNLF A and DF-HNLF B are set to 0.006 ps/nm2/km

Fig. 12
Fig. 12

Spectra of time-lens pair output in case of (a) dispersion slope of DF-HNLF A is 0.006 ps/(nm2.km), other dispersion slopes are set to zero. (b) dispersion slope of DF-HNLF B is 0.006 ps/(nm2.km), other dispersion slopes are set to zero.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t record =4π ϕ f Δ f pump
Δ f in =| C 1 C 2 2Δ f pump2 |=| ϕ f2 ϕ f1 2Δ f pump2 |

Metrics