Abstract

Time-lenses provide a promising platform for novel, broadband optical signal processing. However, in order to minimize system penalties, design constraints must be adequately taken into account. We investigate the impact of third-order-dispersion and nonlinear distortion on the performance of time-lens-based communication systems for the first time. Here, we propose a novel application of time-lenses - temporal compression and time-division multiplexing of optical OFDM channels, to provide a 1 Tb/s superchannel. Time-lens system performance degradations are investigated in our proposed system and the results are applicable to all four wave mixing based time-lens systems. Our work can help to optimize time-lens based communication systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT

Dong Yang and Shiva Kumar
Opt. Express 17(20) 17214-17226 (2009)

All-optical wavelength conversion for mode division multiplexed superchannels

Jiaxin Gong, Jing Xu, Ming Luo, Xiang Li, Ying Qiu, Qi Yang, Xinliang Zhang, and Shaohua Yu
Opt. Express 24(8) 8926-8939 (2016)

Optimization and characterization of highly nonlinear fiber for broadband optical time lens applications

M. Lillieholm, P. Guan, M. Galili, M. S. Møller-Kristensen, L. Grüner-Nielsen, and L. K. Oxenløwe
Opt. Express 25(11) 12566-12580 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).
    [Crossref] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
    [Crossref] [PubMed]
  3. B. Li, C. Zhang, J. Kang, X. Wei, S. Tan, and K. K. Y. Wong, “109 MHz optical tomography using temporal magnification,” Opt. Lett. 40(13), 2965–2968 (2015).
    [Crossref] [PubMed]
  4. N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
    [Crossref]
  5. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
    [Crossref] [PubMed]
  6. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
    [Crossref]
  7. E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
    [Crossref]
  8. Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
    [Crossref]
  9. H. Hu, J. L. Areal, H. C. H. Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Tu.3.K.4.
    [Crossref]
  10. H. Hu, J. L. Areal, E. Palushani, M. Galili, A. T. Clausen, M. S. Berger, L. K. Oxenløwe, and P. Jeppesen, “Synchronization and NRZ-to-RZ format conversion of 10 G Ethernet packet based on a time lens,” in Photonics in Switching, OSA Technical Digest (Optical Society of America, 2010), paper PMD2.
  11. T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol. 24(7), 2530–2540 (2006).
    [Crossref]
  12. A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
    [Crossref] [PubMed]
  13. Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
    [Crossref]
  14. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
    [Crossref]
  15. C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
    [Crossref]
  16. A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
    [Crossref]
  17. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  18. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
    [Crossref]
  19. B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A 11(12), 3229–3234 (1994).
    [Crossref]
  20. H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), Geneva, Switzerland, paper Mo.1.A.5.
    [Crossref]
  21. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref] [PubMed]
  22. P. Guan, D. Kong, K. M. Røge, H. C. H. Mulvad, M. Galili, and L. K. Oxenløwe, “Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation,” in Optical Fiber Communication Conference, Technical Digest (optical Society of America, 2014), paper W4F.1.
    [Crossref]
  23. V. Torres-Company, J. Lancis, and P. Andrés, “Spectral imaging system for scaling the power spectrum of optical waveforms,” Opt. Lett. 32(19), 2849–2851 (2007).
    [Crossref] [PubMed]
  24. E. Palushani, H. C. H. Mulvad, D. Kong, P. Guan, M. Galili, and L. K. Oxenløwe, “All-optical OFDM demultiplexing by spectral magnification and band-pass filtering,” Opt. Express 22(1), 136–144 (2014).
    [Crossref] [PubMed]
  25. A. W. Lohmann and D. Mendlovic, “Temporal filtering with time lenses,” Appl. Opt. 31(29), 6212–6219 (1992).
    [Crossref] [PubMed]
  26. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
    [Crossref] [PubMed]
  27. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
    [Crossref] [PubMed]
  28. A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
    [Crossref] [PubMed]
  29. OFS datasheet, “HNLF zero-slope, HNLF zero-slope highly non-linear fiber modules,” http://fiber-optic-catalog.ofsoptics.com/item/optical–fibers/highly-nonlinear-fiber-optical-fibers1/hnlf-zero-slope-highly-non-linear-fiber-modules (OFS, 2015)

2015 (1)

2014 (2)

2013 (1)

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

2012 (2)

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

2011 (3)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

2009 (4)

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[Crossref] [PubMed]

O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

2008 (4)

2007 (1)

2006 (2)

2001 (1)

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

1994 (1)

1992 (1)

1989 (1)

Andrés, P.

Armstrong, J.

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

Bao, H.

Bennett, C. V.

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

Berger, N. K.

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

Clausen,

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Clausen, A. T.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Du, L. B.

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Galili, M.

E. Palushani, H. C. H. Mulvad, D. Kong, P. Guan, M. Galili, and L. K. Oxenløwe, “All-optical OFDM demultiplexing by spectral magnification and band-pass filtering,” Opt. Express 22(1), 136–144 (2014).
[Crossref] [PubMed]

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Grüner-Nielsen, L.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Guan, P.

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Hao Hu, L. K.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Hirooka, T.

Hu, H.

Huang, B.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Huo, L.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Hvam, J. M.

Jeppesen, P.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011).
[Crossref] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

Ji, H.

Kang, J.

Kolner, B. H.

Kong, D.

Kuzucu, O.

Lancis, J.

Li, B.

Li, W.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Li, Y.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Lillieholm, M.

Lipson, M.

Liu, D.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Lohmann, A. W.

Lou, C.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Lowery, A. J.

A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
[Crossref] [PubMed]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
[Crossref] [PubMed]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

Mendlovic, D.

Mulvad, H. C. H.

Nakazawa, M.

Nazarathy, M.

Okawachi, Y.

Oxenlowe, A. T.

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Oxenløwe, L. K.

Palushani, E.

Pu, M.

Salem, R.

Schröder, J.

Shieh, W.

Tan, S.

Tang, Y.

Torres-Company, V.

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009).
[Crossref] [PubMed]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Wang, C.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Wang, Q.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Wei, X.

Wong, K. K. Y.

Xing, Y.

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

Yang, K.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Ye, F.

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Yvind, K.

Zhang, C.

Appl. Opt. (1)

Electron. Lett. (2)

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[Crossref]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42(6), 370–372 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. V. Bennett and B. H. Kolner, “Aberrations in temporal imaging,” IEEE J. Quantum Electron. 37(1), 20–32 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Palushani, H. C. H. Mulvad, M. Galili, L. K. Hao Hu, A. T. Oxenlowe, Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Optical time-division demultiplexing using a time-lens-assisted Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 25(15), 1503–1505 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[Crossref]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

N. K. Berger, “Generation of long bursts of high-repetition-rate arbitrarily shaped optical pulses using time lens,” Opt. Commun. 285(18), 3855–3863 (2012).
[Crossref]

Y. Li, W. Li, F. Ye, C. Wang, D. Liu, B. Huang, and K. Yang, “Experimental implementation of an all-optical OFDM system based on time lens,” Opt. Commun. 284(16-17), 3983–3989 (2011).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[Crossref]

Opt. Lett. (4)

Other (5)

OFS datasheet, “HNLF zero-slope, HNLF zero-slope highly non-linear fiber modules,” http://fiber-optic-catalog.ofsoptics.com/item/optical–fibers/highly-nonlinear-fiber-optical-fibers1/hnlf-zero-slope-highly-non-linear-fiber-modules (OFS, 2015)

P. Guan, D. Kong, K. M. Røge, H. C. H. Mulvad, M. Galili, and L. K. Oxenløwe, “Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation,” in Optical Fiber Communication Conference, Technical Digest (optical Society of America, 2014), paper W4F.1.
[Crossref]

H. C. H. Mulvad, H. Hu, M. Galili, H. Ji, E. Palushani, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “DWDM-to-OTDM conversion by time-domain optical Fourier transformation,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), Geneva, Switzerland, paper Mo.1.A.5.
[Crossref]

H. Hu, J. L. Areal, H. C. H. Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. T. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenlowe, “Synchronization, retiming and OTDM of an asynchronous 10 Gigabit Ethernet NRZ packet using a time lens for Terabit Ethernet,” in 37th European Conference and Exhibition on Optical Communication (ECOC, 2011), paper Tu.3.K.4.
[Crossref]

H. Hu, J. L. Areal, E. Palushani, M. Galili, A. T. Clausen, M. S. Berger, L. K. Oxenløwe, and P. Jeppesen, “Synchronization and NRZ-to-RZ format conversion of 10 G Ethernet packet based on a time lens,” in Photonics in Switching, OSA Technical Digest (Optical Society of America, 2010), paper PMD2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Analogue between physical lens and time-lens. Input and Output dispersions act as free-space diffraction. Temporal chirp plays the role of spatial chirp.

Fig. 2
Fig. 2

Schematic of a time-lens imaging system. The first time-lens converts OFDM to Nyquist-OTDM, and the second time-lens converts the signal to spectrally magnified OFDM.

Fig. 3
Fig. 3

Schematic of Time Division Multiplexing of time-lens compressed OFDM streams. Two OFDM channels are separately compressed by time-lenses and then time-interleaved.

Fig. 4
Fig. 4

Simulation setup of time division multiplexing five 5-subcarrier OFDM tributaries with quadrature phase-shift keying (QPSK).

Fig. 5
Fig. 5

(Top) optical spectra after the first time-lens; (Bottom) optical spectra after the second time-lens.

Fig. 6
Fig. 6

(Top)Waveform of original signal; (Middle) Waveform of signal compressed by time-lenses; (Bottom) Waveform of the time division multiplexed five OFDM channels.

Fig. 7
Fig. 7

Eye diagram of an OFDM subcarrier at receiver on I phase.

Fig. 8
Fig. 8

Q vs. OSNR of TDM of 5 time-lenses compressed OFDM channels.

Fig. 9
Fig. 9

Q factor vs. system parameters (a) Q factor vs. signal average power. (b) Q factor vs. Idler 1 power. (с) Q factor vs. Pump 1 average power. (d) Q factor vs. Pump 2 average power. Red represents Idler 2 average power. Blue represents Q factor.

Fig. 10
Fig. 10

Spectra at output of DF-HNLF A (left) and DF-HNLF B (right) under the conditions (a) and (b): 16-dBm signal power, 23-dBm Pump 1 power, 28-dBm Pump 2 power; (c) and (d): 0-dBm signal power, 33-dBm Pump 1 power, 28-dBm Pump 2 power; (e) and (f): 0-dBm signal power, 33-dBm Pump 1 power, 28-dBm Pump 2 power, with Idler 1 attenuated by 14 dB; (g) and (h): 0-dBm signal power, 23-dBm Pump 1 power, and 40-dBm Pump 2 power.

Fig. 11
Fig. 11

Q vs. OSNR of 5-channel TDM of OFDM channels. The dispersion slopes of Fiber 3 and Fiber 5 are set to 0.092 ps/nm2/km, and the dispersion slope of DF-HNLF A and DF-HNLF B are set to 0.006 ps/nm2/km

Fig. 12
Fig. 12

Spectra of time-lens pair output in case of (a) dispersion slope of DF-HNLF A is 0.006 ps/(nm2.km), other dispersion slopes are set to zero. (b) dispersion slope of DF-HNLF B is 0.006 ps/(nm2.km), other dispersion slopes are set to zero.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t record =4π ϕ f Δ f pump
Δ f in =| C 1 C 2 2Δ f pump2 |=| ϕ f2 ϕ f1 2Δ f pump2 |

Metrics