Abstract

Metallic and dielectric nanostructures can show sharp contrasted resonances, sensitive to the environment, and high field enhancement in sub-wavelength volumes. For this reason, these structures are commonly used as molecular sensors. Only few works have focused on their application in optical microscopy, in particular in superresolution. In this work we have designed, fabricated and optically tested a nanostructured TiO2 substrate, fabricated by direct embossing of TiO2 derived film, as a substrate for fluorescence microscopy. Moreover, using numerical simulations, we have compared the signal to background noise with respect to other metallo-dielectric structures. We show that the TiO2 structure is a good candidate for reducing the thickness of the fluorescence excitation down to ~100 nm. Therefore, this substrate can be used to obtain Total Internal Reflection (TIRF) axial resolution without a TIRF-Microscopy system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cathodoluminescence Microscopy of nanostructures on glass substrates

Angela C. Narváez, I. Gerward C. Weppelman, Robert J. Moerland, Nalan Liv, A. Christiaan Zonnevylle, Pieter Kruit, and Jacob P. Hoogenboom
Opt. Express 21(24) 29968-29978 (2013)

Aluminum oxide nanostructure-based substrates for fluorescence enhancement

Xiang Li, Yuan He, Tianhua Zhang, and Long Que
Opt. Express 20(19) 21272-21277 (2012)

Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy

Ruei-Yu He, Guan-Liang Chang, Hua-Lin Wu, Chi-Hung Lin, Kuo-Chih Chiu, Yuan-Deng Su, and Shean-Jen Chen
Opt. Express 14(20) 9307-9316 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
    [Crossref] [PubMed]
  2. A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [Crossref] [PubMed]
  3. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
    [Crossref] [PubMed]
  4. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
    [Crossref] [PubMed]
  5. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [Crossref] [PubMed]
  6. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  7. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  8. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
    [Crossref] [PubMed]
  9. E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
    [Crossref]
  10. G. Soavi, G. Della Valle, P. Biagioni, A. Cattoni, G. Cerullo, and D. Brida, “Ultrafast non-thermal response of Plasmonic resonance in Gold Nanoantennas,” in CLEO:2014, OSA Technical Digest (online) (OSA, 2014), paper FTh4C.7.
  11. J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut d'Optique, Palaiseau, France (2005).
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  13. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  14. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  15. C. R. Doerr and H. Kogelnik, “Dielectric waveguide theory,” J. Lightwave Technol. 26(9), 1176–1187 (2008).
    [Crossref]
  16. X. S. A. Maier, Plasmonics: Fundamentals and Aplications (Springer, 2007), Ch. 5.
  17. J. Plain and J. Martin, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2014).
  18. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  19. H. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11(15), 1799–1808 (2003).
    [Crossref] [PubMed]
  20. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [Crossref] [PubMed]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  22. A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

2014 (2)

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

J. Plain and J. Martin, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2014).

2013 (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

2011 (2)

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (3)

2007 (2)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

2003 (2)

H. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11(15), 1799–1808 (2003).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

1996 (1)

1995 (2)

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bashir, R.

Block, I. D.

Bonod, N.

Bouchoule, S.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brunstein, M.

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Cattoni, A.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Char, K.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

Chaudhery, V.

Chen, J.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Collin, S.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Cunningham, B. T.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[Crossref] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Decanini, D.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Devilez, A.

Doerr, C. R.

Dorvel, B. R.

Estrada, L. C.

Faustini, M.

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Gachet, D.

Ganesh, N.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[Crossref] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

García-Parajó, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Gaylord, T. K.

Gérard, D.

Ghenuche, P.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Grann, E. B.

Grosso, D.

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Haghiri-Gosnet, A. M.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Hattori, H.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Jones, S. I.

Kogelnik, H.

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Lalanne, P.

Leclercq, J.

Le-Gratiet, L.

Letartre, X.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Levenson, J. A.

Lim, J.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

Maghiri-Gosnet, A. M.

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Martin, J.

J. Plain and J. Martin, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2014).

Martinez, O. E.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Mathias, P. C.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[Crossref] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Moharam, M. G.

Monnier, P.

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Morris, G. M.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Okamoto, K.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

Pelouard, J. L.

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Plain, J.

J. Plain and J. Martin, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2014).

Pommet, D. A.

Popov, E.

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

Rojo-Romeo, P.

Sagnes, I.

Seassal, C.

Shinohara, S.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Stout, B.

Talneau, A.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tamada, K.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Usukura, E.

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

Viktorovitch, P.

Vodkin, L. O.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[Crossref] [PubMed]

Yacomotti, A.

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

Yacomotti, A. M.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, and K. Tamada, “Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets,” Appl. Phys. Lett. 104(12), 121906 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

J. Phys. D Appl. Phys. (1)

J. Plain and J. Martin, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D Appl. Phys. 48(18), 184002 (2014).

Nano Lett. (3)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

A. Cattoni, P. Ghenuche, A. M. Haghiri-Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin, “λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol. 8(7), 512–516 (2013).
[Crossref] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Other (4)

G. Soavi, G. Della Valle, P. Biagioni, A. Cattoni, G. Cerullo, and D. Brida, “Ultrafast non-thermal response of Plasmonic resonance in Gold Nanoantennas,” in CLEO:2014, OSA Technical Digest (online) (OSA, 2014), paper FTh4C.7.

J. P. Hugonin and P. Lalanne, “Reticolo software for grating analysis,” Institut d'Optique, Palaiseau, France (2005).

A. Cattoni, M. Faustini, A. Yacomotti, D. Decanini, D. Grosso, and A. M. Maghiri-Gosnet, “Degassing-assisted patterning of Sol-gel derived films: a pressureless technique for low-cost and large-scale replication of nanostructures at the 15 nm scale,” in preparation.

X. S. A. Maier, Plasmonics: Fundamentals and Aplications (Springer, 2007), Ch. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a). Sketch of the excitation and detection configuration. Inset: sketch of the resonance spectrum of a structured substrate. (b). Detection and excitation volumes in confocal configuration.
Fig. 2
Fig. 2 Sketches of the simulated structures (a). (b). Normalized reflected and transmitted signal. The optical resonances are signed with a black arrow. The numbers correspond to the transmission at resonance. (c). Intensity distribution in the structure. (d). Intensity profiles corresponding to the dotted white lines show in (c). The origin (z = 0) corresponds to the top of the structured substrate.
Fig. 3
Fig. 3 (a) and (b). Field enhancement (η) and signal transmission (T) at resonance (λ = 490nm) as a function of the decay distance (δ). (c). Values of R (magnitude relating η, T and δ, R = ηδ/(Tδ’/2)) as a function of the decay distance.
Fig. 4
Fig. 4 (a) Top: Sketch of the fabricated TiO2 nanostructure on glass. Lx: line width, Px: grating period, h: line thickness. Bottom: SEM image of one of the structures. (b) Transmission spectrums of TiO2 structure for different Px values (Lx = 130nm). Transmitted intensities higher than 1 are due to transmission variation depending on the position on the sample.
Fig. 5
Fig. 5 (a) Experimental set up for image contrast test. (b) Fluorescent beads covered with fluorescein in solution outside (left) and inside (right) the structure (Px = 350nm). The contrast increases more than double within the structure. Note: No degradation of lateral spatial resolution was noticed inside the structure.

Tables (2)

Tables Icon

Table 1 Parameters values of the simulated structures

Tables Icon

Table 2 Transmission at resonance (T), field enhancement (ƞ), penetration depth (δ) and calculated R.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= ηδ T δ ' /2 .

Metrics