Abstract

A compact static infrared snapshot imaging spectrometer (ISIS) is designed in order to satisfy the application requirements of real-time spectral imaging for the moving targets. It consists of a CDP (crossed dispersion prism), an imaging lens, and a detector. Here we describe the spectral imaging principle, and design a short wave infrared imaging spectrometer with 4.8° field of view, the measured spectrum is from 0.9µm to 2.5µm and is sampled by 40 spectral channels. This instrument has a large potential for detecting, locating and identifying unknown energetic events in real-time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a blurred spectral images restoration technology for CTIS imaging spectrometer

Pengwei Zhou, Shangzhong Jin, Chao Dong, and Ningchuan Li
Opt. Express 24(5) 4881-4889 (2016)

Demonstration of a high-speed nonscanning imaging spectrometer

M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker
Opt. Lett. 22(16) 1271-1273 (1997)

Recovery of a flawed hyperspectral imager calibration using optical modeling

William R. Johnson, Keith Hege, Dan O’Connell, and Eustace L. Dereniak
Opt. Express 12(10) 2251-2257 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
    [Crossref]
  2. J. Choi, H. J. Kong, and J. U. Lee, “Initial design method based on an iterative calculation of aberration and its application to an objective lens for imaging spectrometer,” Appl. Opt. 53(10), 1983–1989 (2014).
  3. S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
    [Crossref]
  4. Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).
  5. B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).
  6. V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).
  7. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
    [Crossref] [PubMed]
  8. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed Nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997).
    [Crossref] [PubMed]
  9. N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction speed for CTIS imaing spectrometers,” Proc. SPIE 6661, 666103 (2007).
    [Crossref]
  10. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47(28), F85–F95 (2008).
    [Crossref] [PubMed]
  11. J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 3747 (1995).
    [Crossref]
  12. J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14(2951), 2951–2961 (1997).
  13. J. H. Mathews, and K. D. Fink, Numerical methods Using MATLAB, (Fourth edition2004).
  14. ZEMAX development corporation, Zemax Optical design program user’s guide, June(2009).

2014 (4)

S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
[Crossref]

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

J. Choi, H. J. Kong, and J. U. Lee, “Initial design method based on an iterative calculation of aberration and its application to an objective lens for imaging spectrometer,” Appl. Opt. 53(10), 1983–1989 (2014).

2008 (2)

N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47(28), F85–F95 (2008).
[Crossref] [PubMed]

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

2007 (1)

N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction speed for CTIS imaing spectrometers,” Proc. SPIE 6661, 666103 (2007).
[Crossref]

2006 (1)

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

2001 (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

1997 (2)

1995 (1)

J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 3747 (1995).
[Crossref]

An, M.

Anikin, S. P.

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

Bearman, G.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Bell, G. S.

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

Bintley, D.

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

Brodzik, A. K.

Chang, S.

S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
[Crossref]

Chavel, P.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

Chizhikov, S. I.

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

Choi, J.

Dereniak, E. L.

Descour, M. R.

Ferrec, Y.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

Fraser, S. E.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Friberg, P.

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

Gom, B. G.

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

Hagen, N.

N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47(28), F85–F95 (2008).
[Crossref] [PubMed]

N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction speed for CTIS imaing spectrometers,” Proc. SPIE 6661, 666103 (2007).
[Crossref]

Hofer, S.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

Kaiser, S.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

Kim, S. H.

S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
[Crossref]

Kong, H. J.

S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
[Crossref]

J. Choi, H. J. Kong, and J. U. Lee, “Initial design method based on an iterative calculation of aberration and its application to an objective lens for imaging spectrometer,” Appl. Opt. 53(10), 1983–1989 (2014).

Lansford, R.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

Lee, J. U.

Maker, P. D.

Molchanov, V. Y.

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

Mooney, J. M.

Naylor, D. A.

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

Sang, B.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

Sass, D. T.

N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction speed for CTIS imaing spectrometers,” Proc. SPIE 6661, 666103 (2007).
[Crossref]

Sauer, H.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

Schubert, J.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

Schumacher, A. B.

Stuffler, T.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

Taboury, J.

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

Thome, K. J.

Vickers, V. E.

Volin, C. E.

Wilson, D. W.

Yushkov, K. B.

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

Appl. Opt. (2)

J. Biomed. Opt. (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. H. Kim, H. J. Kong, and S. Chang, “Aberration analysis of concentric imaging spectrometer with a convex grating,” Opt. Commun. 333, 6–10 (2014).
[Crossref]

Opt. Eng. (1)

Y. Ferrec, J. Taboury, H. Sauer, and P. Chavel, “Optimal geometry for Sagnac and Michelson interferometers used as spectral imagers,” Opt. Eng. 45(11), 115601 (2006).

Opt. Lett. (1)

Proc. SPIE (5)

B. G. Gom, D. A. Naylor, P. Friberg, G. S. Bell, and D. Bintley, and Sherif,“SCUBA-2 Fourier transform spectrometer (FTS-2)commissioning results,” Proc. SPIE 9253, 915322 (2014).

V. Y. Molchanov, S. P. Anikin, S. I. Chizhikov, and K. B. Yushkov, “Acousto-opitcal imaing spectrompolarimetric dievices:new opportunities and developments,” Proc. SPIE 9147, 91472T (2014).

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaing,” Proc. SPIE 7100, 710014 (2008).
[Crossref]

N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction speed for CTIS imaing spectrometers,” Proc. SPIE 6661, 666103 (2007).
[Crossref]

J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 3747 (1995).
[Crossref]

Other (2)

J. H. Mathews, and K. D. Fink, Numerical methods Using MATLAB, (Fourth edition2004).

ZEMAX development corporation, Zemax Optical design program user’s guide, June(2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical layout of the ISIS system.
Fig. 2
Fig. 2 Dispersion curves for ZnS,CaF2, and Sapphire.
Fig. 3
Fig. 3 Performance of the imaging lens.(a) Layout of imaging lens. (b) MTF plot of imaging lens .(c) Ensquared energy of the imaging lens. (d) Longitudinal aberration of imaging lens.
Fig. 4
Fig. 4 Design result of infrared snapshot imaging spectrometer (ISIS). (a) Space structure of the ISIS. (b)Field curvature and distortion aberration of the ISIS. (c) Dispersion pattern of the ISIS.

Tables (2)

Tables Icon

Table 1 Design parameter of ISIS

Tables Icon

Table 2 Parameter of CDP

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y i ( λ i )= f n 2 ( λ i )[sin γ 1 1 ψ 1 ( λ i ) ψ 1 ( λ i )cos γ 1 ]tan γ 1 1{ n 2 ( λ i ) [sin γ 1 1 ψ 1 ( λ i ) ψ 1 ( λ i )cos γ 1 } 2 n 2 ( λ i )[sin γ 1 1 ψ 1 ( λ i ) ψ 1 ( λ i )cos γ 1 ]tan γ 1 + 1{ n 2 ( λ i ) [sin γ 1 1 ψ 1 ( λ i ) ψ 1 ( λ i )cos γ 1 } 2
ψ 1 (i)= sinα n 2 1 ( λ i ) sin 2 ϕ cos 2 αsinϕsinα 1 [sinα n 2 1 ( λ i ) sin 2 ϕ cosαsinϕ] 2 n 2 ( λ i )
x i ( λ i )= f ' n 4 ( λ i )[sin γ 2 1 ψ 2 ( λ i ) ψ 2 ( λ i )cos γ 2 ]tan γ 2 1 { n 4 ( λ i )[sin γ 2 1 ψ 2 ( λ i ) ψ 2 ( λ i )cos γ 2 } 2 n 4 ( λ i )[sin γ 2 1 ψ 2 ( λ i ) ψ 2 ( λ i )cos γ 2 ]tan γ 2 + 1 { n 4 ( λ i )[sin γ 2 1 ψ 2 ( λ i ) ψ 2 ( λ i )cos γ 2 } 2
ψ 2 (i)= sinβ n 2 3 ( λ i ) sin 2 φ cos 2 βsinφsinβ 1 [sinβ n 2 3 ( λ i ) sin 2 φ cosβsinsinφ] 2 n 4 ( λ i )
x 0 = f ' tan(φ)
y 0 = f ' tan(ϕ)

Metrics