Abstract

We demonstrate the improvement of the transmission performance based on tone-reservation technique in a multiple intermediate-frequency-over-fiber (IFoF) based mobile fronthaul. The tone-reservation technique can suppress nonlinear distortion by eliminating the high peak components of orthogonal frequency-division multiplexing (OFDM) signal. To prevent the regrowth of peak, we employ tone-reservation after multiplexing IF carriers. Furthermore, we use an out-of-band signal as the reserved tones to avoid any modification of a mobile signal. The impact of the number of IF carriers on peak-to-average power ratio (PAPR) characteristics is presented via numerical simulation. For the multi-IFoF based mobile fronthaul, we experimentally investigate the transmission performance of 36-IF carriers of the long term evolution-advanced (LTE-A) signals mapped with 64-quadrature amplitude modulation (QAM). It is clearly observed that the clipping-induced nonlinear distortion is dramatically suppressed by using tone-reservation. As a result, the transmission performance of 36-IF carriers of the LTE-A signal is improved by an error-vector-magnitude (EVM) of 4% (from 9.7% to 5.7%) after 20-km transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Code reservation enabled PAPR reduction of digital CDM based channel aggregation for mobile fronthaul

Zhuqing Ni, Songnian Fu, Haibo Li, Zheng Yang, Chenhui Xie, Xiang Li, Lei Deng, Ming Tang, Jingchi Cheng, and Deming Liu
Opt. Express 26(17) 21585-21593 (2018)

Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation

Minkyu Sung, Seung-Hyun Cho, Hwan Seok Chung, Sun Me Kim, and Jong Hyun Lee
Opt. Express 25(8) 9346-9357 (2017)

Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
  2. A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
    [Crossref]
  3. “Common Public Radio Interface (CPRI); Interface specification, V 6.1,” http://www.cpri.info (2014).
  4. S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
    [Crossref]
  5. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.
  6. N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
    [Crossref]
  7. I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
    [Crossref]
  8. S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
    [Crossref]
  9. H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
    [Crossref]
  10. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
    [Crossref]
  11. D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
    [Crossref]
  12. X. Wu, J. Wang, and Z. Mao, “A novel PTS architecture for PAPR reduction of OFDM signals,” in Proceedings of IEEE Int. Conf. Commun. Syst. (ICCS, 2008), pp. 1055–1060.
  13. K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
    [Crossref]
  14. T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
    [Crossref]
  15. M. Sung, S. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
    [Crossref]
  16. H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio in OFDM signals,” IEEE Trans. Commun. 49(2), 282–289 (2001).
    [Crossref]
  17. Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
    [Crossref]
  18. R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
    [Crossref]
  19. H. Chen, J. Li, C. Yin, K. Xu, Y. Dai, and F. Yin, “Multi-dimensional crest factor reduction and digital predistortion for multi-band radio-over-fiber links,” Opt. Express 22(17), 20982–20993 (2014).
    [Crossref] [PubMed]
  20. H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE J. Sel. Areas Comm. 18(11), 2270–2277 (2000).
    [Crossref]
  21. K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
    [Crossref]
  22. J. C. Chen and C. P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett. 17(11), 933–936 (2010).
    [Crossref]
  23. C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
    [Crossref]
  24. M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
    [Crossref]
  25. J. Tellado, “Peak-to-Average Power Reduction for Multicarrier Modulation,” Ph.D. Thesis, Stanford University, Sept. 1999.
  26. L. Wang and C. Tellambura, “Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Vehicular Technol. 57(3), 1675–1694 (2008).
    [Crossref]
  27. J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
    [Crossref]
  28. 3GPP TS 36.141 v. 9.8.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 9, July, 2011.
  29. 3GPP TS 36.104 v. 11.2.0, “Base Station (BS) Radio Transmission and Reception,” Tech. Spec. Group Radio Access Network, Rel. 11, Nov. 2012.
  30. N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
    [Crossref]
  31. N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
    [Crossref]
  32. H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
    [Crossref] [PubMed]

2015 (3)

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
[Crossref]

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

2014 (5)

H.-Y. Chen, C.-C. Wei, I.-C. Lu, Y.-C. Chen, H.-H. Chu, and J. Chen, “EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation,” Opt. Express 22(12), 14637–14645 (2014).
[Crossref] [PubMed]

H. Chen, J. Li, C. Yin, K. Xu, Y. Dai, and F. Yin, “Multi-dimensional crest factor reduction and digital predistortion for multi-band radio-over-fiber links,” Opt. Express 22(17), 20982–20993 (2014).
[Crossref] [PubMed]

M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
[Crossref]

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

2013 (1)

Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
[Crossref]

2012 (1)

2011 (2)

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
[Crossref]

2010 (2)

K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
[Crossref]

J. C. Chen and C. P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett. 17(11), 933–936 (2010).
[Crossref]

2008 (2)

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

L. Wang and C. Tellambura, “Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Vehicular Technol. 57(3), 1675–1694 (2008).
[Crossref]

2006 (1)

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

2005 (2)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

2001 (1)

H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio in OFDM signals,” IEEE Trans. Commun. 49(2), 282–289 (2001).
[Crossref]

2000 (1)

H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE J. Sel. Areas Comm. 18(11), 2270–2277 (2000).
[Crossref]

Agata, A.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.

Alouini, M.-S.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
[Crossref]

Andre, N. S.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Andrews, J. G.

K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
[Crossref]

Ansari, I. S.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
[Crossref]

Bae, K.

K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
[Crossref]

Berger, M. S.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Checko, A.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Chen, H.

Chen, H.-Y.

Chen, J.

Chen, J. C.

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

J. C. Chen and C. P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett. 17(11), 933–936 (2010).
[Crossref]

Chen, Y.-C.

Cheng, J.

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
[Crossref]

Chi, N.

Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
[Crossref]

Chih-Lin, I.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Chiu, M. H.

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

Cho, S. H.

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

Christiansen, H. L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Chu, H.-H.

Chung, H.

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Chung, H. S.

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

Cui, C.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Dai, Y.

Dang, Y.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Dittmann, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Doo, K. H.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

Duan, R.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Habel, K.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Han, C.

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

Han, S. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

Huang, H. P.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Huang, J.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Imai, H.

H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio in OFDM signals,” IEEE Trans. Commun. 49(2), 282–289 (2001).
[Crossref]

H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE J. Sel. Areas Comm. 18(11), 2270–2277 (2000).
[Crossref]

Jeong, J.

M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
[Crossref]

M. Sung, S. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

Jiang, J. X.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Jiang, T.

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Kang, S.

Kardaras, G.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Kuwano, S.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Lee, J.

M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
[Crossref]

M. Sung, S. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

Lee, J. C.

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

Lee, J. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

Lee, S.

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

Li, C. P.

J. C. Chen and C. P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett. 17(11), 933–936 (2010).
[Crossref]

Li, C.-P.

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

Li, J.

Li, L.

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

Li, R.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Lim, C. W.

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Lim, D. W.

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Liu, W.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Liu, Y.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Louchet, H.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Lu, I.-C.

Luo, R.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

No, J. S.

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

Ochiai, H.

H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio in OFDM signals,” IEEE Trans. Commun. 49(2), 282–289 (2001).
[Crossref]

H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE J. Sel. Areas Comm. 18(11), 2270–2277 (2000).
[Crossref]

Otaka, A.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Park, H.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

Powers, E. J.

K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
[Crossref]

Prasad, N.

K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
[Crossref]

Richter, A.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Scolari, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Shao, Y.

Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
[Crossref]

Shibata, N.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Shim, J.

Sung, M.

M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
[Crossref]

M. Sung, S. Kang, J. Shim, J. Lee, and J. Jeong, “DFT-precoded coherent optical OFDM with Hermitian symmetry for fiber nonlinearity mitigation,” J. Lightwave Technol. 30(17), 2757–2763 (2012).
[Crossref]

Takayoshi, T.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Tanaka, K.

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.

Tellambura, C.

L. Wang and C. Tellambura, “Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Vehicular Technol. 57(3), 1675–1694 (2008).
[Crossref]

Terada, J.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Wang, L.

L. Wang and C. Tellambura, “Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Vehicular Technol. 57(3), 1675–1694 (2008).
[Crossref]

Wang, X.

K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
[Crossref]

Wang, Y.

Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
[Crossref]

Wei, C.-C.

Wen, J.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Wu, Y.

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

Xie, L.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Xu, G. Z.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Xu, K.

Yan, Y.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

Yang, J.

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Yang, K.

K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
[Crossref]

Yang, Y.-S.

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

Yin, C.

Yin, F.

Yuki, N.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

Zhang, T.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Zhang, Y. L.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Zhu, N. H.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

IEEE Access (1)

I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).

IEEE Comm. Surv. and Tutor. (1)

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—a technology overview,” IEEE Comm. Surv. and Tutor. 17(1), 405–426 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

H. Ochiai and H. Imai, “Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,” IEEE J. Sel. Areas Comm. 18(11), 2270–2277 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Y. Shao, Y. Wang, and N. Chi, “60-GHz RoF system with low PAPR 16QAM-OFDM downlink using PTS segmentation,” IEEE Photonics Technol. Lett. 25(9), 855–858 (2013).
[Crossref]

IEEE Signal Process. Lett. (2)

D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett. 12(2), 93–96 (2005).
[Crossref]

J. C. Chen and C. P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett. 17(11), 933–936 (2010).
[Crossref]

IEEE Trans. Broadcast (2)

J. C. Chen, M. H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast 57(3), 752–756 (2011).
[Crossref]

T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
[Crossref]

IEEE Trans. Commun. (2)

K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource allocation in uplink DFT-spread-OFDMA systems,” IEEE Trans. Commun. 59(4), 1099–1113 (2011).
[Crossref]

H. Ochiai and H. Imai, “On the distribution of the peak to average power ratio in OFDM signals,” IEEE Trans. Commun. 49(2), 282–289 (2001).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

L. Wang and C. Tellambura, “Analysis of clipping noise and tone reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Vehicular Technol. 57(3), 1675–1694 (2008).
[Crossref]

IEEE Trans. Wirel. Commun. (2)

K. Bae, J. G. Andrews, and E. J. Powers, “Quantifying an iterative clipping and filtering technique for reducing PAR in OFDM,” IEEE Trans. Wirel. Commun. 9(5), 1558–1563 (2010).
[Crossref]

I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun. 14(8), 4248–4264 (2015).
[Crossref]

IEEE Wireless Commun. (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

IET Commun. (1)

M. Sung, J. Lee, and J. Jeong, “Localised discrete Fourier transform-spread M-ary amplitude shift keying orthogonal frequency division multiplexing with Hermitian symmetry for peak-to-average power ratio reduction,” IET Commun. 8(11), 1938–1946 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

R. Luo, R. Li, Y. Dang, J. Yang, and W. Liu, “Two improved SLM methods for PAPR and BER reduction in OFDM–ROF systems,” Opt. Fiber Technol. 21, 26–33 (2015).
[Crossref]

Other (11)

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

H. S. Chung, S. H. Cho, C. Han, S. Lee, J. C. Lee, and J. H. Lee, “Design of RoF based mobile fronthaul link with multi-IF carrier for LTE/LTE-A signal transmission,” inProceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014).
[Crossref]

X. Wu, J. Wang, and Z. Mao, “A novel PTS architecture for PAPR reduction of OFDM signals,” in Proceedings of IEEE Int. Conf. Commun. Syst. (ICCS, 2008), pp. 1055–1060.

“Common Public Radio Interface (CPRI); Interface specification, V 6.1,” http://www.cpri.info (2014).

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.

N. Shibata, T. Takayoshi, S. Kuwano, N. Yuki, J. Terada, and A. Otaka, “Mobile front-haul employing Ethernet-based TDM-PON system for small cells,” in Optical Fiber Communication Conference (2015), paper M2J.1.
[Crossref]

J. Tellado, “Peak-to-Average Power Reduction for Multicarrier Modulation,” Ph.D. Thesis, Stanford University, Sept. 1999.

3GPP TS 36.141 v. 9.8.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 9, July, 2011.

3GPP TS 36.104 v. 11.2.0, “Base Station (BS) Radio Transmission and Reception,” Tech. Spec. Group Radio Access Network, Rel. 11, Nov. 2012.

C. Han, S. H. Cho, H. S. Chung, S. Lee, and J. Lee, “Experimental comparison of the multi-IF carrier generation methods in IF-over-Fiber system using LTE signals,” in Proceedings of Microwave Photonics/Asia-Pacific Microwave Photonics Conference (2014), pp. 311–314.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Configuration of the next-generation mobile fronthaul based on the multi-IFoF technology.
Fig. 2
Fig. 2 Detail configuration of the multi-IFoF technology based mobile fronthaul.
Fig. 3
Fig. 3 PAPR characteristics of the OFDM signals with and without the PAPR reduction based on the DFT-spread scheme (a) the CCDF of PAPR for IF numbers of 1 and 36; (b) PAPR at a CCDF of 10−3 as a function of the number of IF carriers.
Fig. 4
Fig. 4 Conceptual diagram of the tone-reservation technique (a) block diagram of the tone-reservation technique (b) the RF spectra of the OFDM signal without tone-reservation; (c) the RF spectra of the clipping noise after filtering on data signal bands; (d) the RF spectra of the OFDM signal with tone-reservation; (e) the pulse shape of the OFDM signal without tone-reservation; (f) the pulse shape of the OFDM signal with tone-reservation.
Fig. 5
Fig. 5 Experimental setup for evaluating the transmission performance of multi-IFoF system with the tone-reservation technique.
Fig. 6
Fig. 6 EVM performance as a function of OMI/ch for 36-IF carriers of the LTE-A signal under BTB condition.
Fig. 7
Fig. 7 EVM performances and constellation diagrams for 36-IF carriers of the LTE-A signals (a) EVM performances as functions of channel index for BTB and 20-km transmission; (b) constellations at 36th carrier with tone-reservation (BTB); (c) constellations at 36th carrier without tone-reservation (BTB); (d) constellations at 36th carrier with tone-reservation (20 km); (e) constellations at 36th carrier without tone-reservation (20 km).
Fig. 8
Fig. 8 Spectrum analysis of the received LTE-A signal at 36th channel for BTB and 20-km transmission in an OMI/ch of 10%.
Fig. 9
Fig. 9 EVM performances and constellation diagrams for 36th IF carrier of the LTE signals (a) EVM performances as functions of the received optical power for BTB and 20-km transmission; (b) constellations with tone-reservation at a received optical power of −3 dBm (BTB); (c) constellations without tone-reservation at a received optical power of −3 dBm (BTB); (d) constellations with tone-reservation at a received optical power of −3 dBm (20 km); (e) constellations without tone-reservation at a received optical power of −3 dBm (20 km).

Metrics