Abstract

We propose and demonstrate that vertically curved waveguides (VCWs) enable vertical coupling between silicon wire waveguides and optical fibers with low wavelength dependence and polarization dependence for wide telecommunication wavelength band light. To bend these VCWs, we implanted silicon ions into silicon wire cantilevers from the vertical direction. The internal stress distribution that was induced by ion implantation drove the bending force, and we achieved vertical bending of the waveguides, with curvature radii ranging from 3 to 25 μm. At a radius of curvature of 6 μm, we obtained a coupling loss of 3 dB using a lens fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical attenuation in ion-implanted silicon waveguide racetrack resonators

J. K. Doylend, P. E. Jessop, and A. P. Knights
Opt. Express 19(16) 14913-14918 (2011)

Efficient fiber coupler for vertical silicon slot waveguides

Haishan Sun, Antao Chen, Attila Szep, and Larry R. Dalton
Opt. Express 17(25) 22571-22577 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  3. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [Crossref]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
    [Crossref]
  5. Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express 20(26), B256–B263 (2012).
    [Crossref] [PubMed]
  6. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
    [Crossref]
  7. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
    [Crossref] [PubMed]
  8. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
    [Crossref]
  9. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32(7), 1329–1336 (2014).
    [Crossref]
  10. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  11. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [Crossref] [PubMed]
  12. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  13. M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
    [Crossref] [PubMed]
  14. W. D. Sacher, Y. Huang, L. Ding, B. J. Taylor, H. Jayatilleka, G. Q. Lo, and J. K. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
    [Crossref] [PubMed]
  15. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27(4), 417–425 (2009).
    [Crossref]
  16. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” CLEO/QELS 1LE, 1293 (2009).
    [Crossref]
  17. J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
    [Crossref]
  18. M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20(1), 164–172 (2012).
    [Crossref] [PubMed]
  19. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [Crossref] [PubMed]
  20. P. Sun and R. M. Reano, “Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers,” Opt. Express 19(5), 4722–4727 (2011).
    [Crossref] [PubMed]
  21. C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
    [Crossref] [PubMed]
  22. L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
    [Crossref]
  23. E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
    [Crossref]
  24. A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
    [Crossref]
  25. N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
    [Crossref]
  26. E. F. Pecora, A. Irrera, and F. Priolo, “Ion beam-induced bending of silicon nanowires,” Physica E 44(6), 1074–1077 (2012).
    [Crossref]
  27. N. S. Rajput, A. Banerjee, and H. C. Verma, “Electron- and ion-beam-induced maneuvering of nanostructures: phenomenon and applications,” Nanotechnology 22(48), 485302 (2011).
    [Crossref] [PubMed]
  28. M. Nagao and T. Yoshida, “Fabrication of gated nano electron source for vacuum nanoelectronics,” Microelectron. Eng. 132, 14–20 (2015).
    [Crossref]
  29. H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
    [Crossref]
  30. J. F. Ziegler, “SRIM-The Stopping and Range of Ions in Matter,” http://www.srim.org .

2015 (1)

M. Nagao and T. Yoshida, “Fabrication of gated nano electron source for vacuum nanoelectronics,” Microelectron. Eng. 132, 14–20 (2015).
[Crossref]

2014 (4)

N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32(7), 1329–1336 (2014).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, B. J. Taylor, H. Jayatilleka, G. Q. Lo, and J. K. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
[Crossref] [PubMed]

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

2013 (2)

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

2012 (3)

2011 (5)

2010 (1)

2009 (4)

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[Crossref] [PubMed]

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27(4), 417–425 (2009).
[Crossref]

2007 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
[Crossref]

2006 (3)

2005 (1)

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

1995 (1)

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Absil, P.

Akagawa, T.

Akiyama, S.

Amemiya, T.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Antelius, M.

Arai, S.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Arakawa, Y.

Atsumi, Y.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Ayre, M.

Baba, T.

Baets, R.

Banerjee, A.

N. S. Rajput, A. Banerjee, and H. C. Verma, “Electron- and ion-beam-induced maneuvering of nanostructures: phenomenon and applications,” Nanotechnology 22(48), 485302 (2011).
[Crossref] [PubMed]

Benisty, H.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Boninelli, S.

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Borschel, C.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Brenot, R.

Cambournac, C.

Chen, X.

Choi, S. G.

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
[Crossref]

Cui, A.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Daele, P. V.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Ding, L.

Fathpour, S.

Fenton, J. C.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Fujikata, J.

Geburt, S.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Gu, C.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

Gutsche, C.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Gylfason, K. B.

Hatori, N.

Hayashi, Y.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Hirayama, N.

Holzworth, M. R.

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Horikawa, T.

Huang, Y.

Imai, M.

Irrera, A.

E. F. Pecora, A. Irrera, and F. Priolo, “Ion beam-induced bending of silicon nanowires,” Physica E 44(6), 1074–1077 (2012).
[Crossref]

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
[Crossref]

Ishizaka, M.

Iwadate, K.

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Jalali, B.

Jayatilleka, H.

Jones, K. S.

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Kamei, T.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Kang, J.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Krauss, T. F.

F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol. 27(4), 417–425 (2009).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Kuno, Y.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Kurihara, K.

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Lepage, G.

Li, W.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Lipson, M.

Liu, Z.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Lo, G. Q.

Luo, Q.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Luo, X.

N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
[Crossref]

Manako, S.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Mesel, K. D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Miura, M.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Mori, M.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
[Crossref]

Murase, K.

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Nagao, M.

M. Nagao and T. Yoshida, “Fabrication of gated nano electron source for vacuum nanoelectronics,” Microelectron. Eng. 132, 14–20 (2015).
[Crossref]

Nagase, M.

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Nakamura, T.

Namatsu, H.

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Niepelt, R.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Nishiyama, N.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Noguchi, M.

Noguchi, Y.

Nötzel, R.

Okamoto, D.

Okano, M.

Okayama, H.

Omoda, E.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Pecora, E. F.

E. F. Pecora, A. Irrera, and F. Priolo, “Ion beam-induced bending of silicon nanowires,” Physica E 44(6), 1074–1077 (2012).
[Crossref]

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Picraux, S. T.

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Poon, J. K.

Priolo, F.

E. F. Pecora, A. Irrera, and F. Priolo, “Ion beam-induced bending of silicon nanowires,” Physica E 44(6), 1074–1077 (2012).
[Crossref]

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Prost, W.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Rajput, N. S.

N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
[Crossref]

N. S. Rajput, A. Banerjee, and H. C. Verma, “Electron- and ion-beam-induced maneuvering of nanostructures: phenomenon and applications,” Nanotechnology 22(48), 485302 (2011).
[Crossref] [PubMed]

Reano, R. M.

Regolin, I.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Roelkens, G.

Romano, L.

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Ronning, C.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Rudawski, N. G.

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

Sacher, W. D.

Saito, E.

Saitou, S.

Sakakibara, Y.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Schwen, D.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Selvaraja, S.

Shen, T. H.

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

Shimizu, T.

Shimura, D.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
[Crossref]

Smit, M.

Sohlström, H.

Spinella, C.

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Stichtenoth, D.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Stomeo, T.

Sun, P.

Suzuki, J.

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Suzuki, M.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Takahashi, H.

Takahashi, M.

Takei, R.

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

Taylor, B. J.

Tegude, F. J.

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Thourhout, D.

Tong, Z.

N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
[Crossref]

Tsang, H. K.

Tsuchizawa, T.

Urino, Y.

Usuki, T.

Van Laere, F.

Van Thourhout, D.

Verheyen, P.

Verma, H. C.

N. S. Rajput, A. Banerjee, and H. C. Verma, “Electron- and ion-beam-induced maneuvering of nanostructures: phenomenon and applications,” Nanotechnology 22(48), 485302 (2011).
[Crossref] [PubMed]

Vermeulen, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
[Crossref]

Wood, M.

Yaegashi, H.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
[Crossref]

Yamada, K.

Yamagishi, M.

Yamamoto, T.

Yoshida, T.

M. Nagao and T. Yoshida, “Fabrication of gated nano electron source for vacuum nanoelectronics,” Microelectron. Eng. 132, 14–20 (2015).
[Crossref]

Appl. Phys. Express (1)

J. Kang, Y. Atsumi, Y. Hayashi, J. Suzuki, Y. Kuno, T. Amemiya, N. Nishiyama, and S. Arai, “50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors,” Appl. Phys. Express 7(3), 032202 (2014).
[Crossref]

Appl. Phys. Lett. (3)

R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, and Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013).
[Crossref]

A. Cui, J. C. Fenton, W. Li, T. H. Shen, Z. Liu, Q. Luo, and C. Gu, “Ion-beam-induced bending of freestanding amorphous nanowires: the importance of the substrate material and charging,” Appl. Phys. Lett. 102(21), 213112 (2013).
[Crossref]

H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, and K. Murase, “Dimensional limitations of silicon nanolines resulting from pattern distortion due to surface tension of rinse water,” Appl. Phys. Lett. 66(20), 2655 (1995).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

E. F. Pecora, A. Irrera, S. Boninelli, L. Romano, C. Spinella, and F. Priolo, “Nanoscale amorphization, bending and recrystallization in silicon nanowires,” Appl. Phys., A Mater. Sci. Process. 102(1), 13–19 (2011).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

IEICE Trans. Electron. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. 90(1), 59–64 (2007).
[Crossref]

J. Appl. Phys. (1)

L. Romano, N. G. Rudawski, M. R. Holzworth, K. S. Jones, S. G. Choi, and S. T. Picraux, “Nanoscale manipulation of Ge nanowires by ion irradiation,” J. Appl. Phys. 106(11), 114316 (2009).
[Crossref]

J. Lightwave Technol. (4)

Mater. Res. Express (1)

N. S. Rajput, Z. Tong, and X. Luo, “Investigation of ion induced bending mechanism for nanostructures,” Mater. Res. Express 2(1), 015002 (2014).
[Crossref]

Microelectron. Eng. (1)

M. Nagao and T. Yoshida, “Fabrication of gated nano electron source for vacuum nanoelectronics,” Microelectron. Eng. 132, 14–20 (2015).
[Crossref]

Nanotechnology (1)

N. S. Rajput, A. Banerjee, and H. C. Verma, “Electron- and ion-beam-induced maneuvering of nanostructures: phenomenon and applications,” Nanotechnology 22(48), 485302 (2011).
[Crossref] [PubMed]

Opt. Express (8)

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
[Crossref] [PubMed]

Y. Urino, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, H. Takahashi, E. Saito, M. Okano, T. Shimizu, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, J. Fujikata, D. Shimura, H. Okayama, H. Yaegashi, T. Tsuchizawa, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, and Y. Arakawa, “Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate,” Opt. Express 20(26), B256–B263 (2012).
[Crossref] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[Crossref] [PubMed]

M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Opt. Express 19(4), 3592–3598 (2011).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, B. J. Taylor, H. Jayatilleka, G. Q. Lo, and J. K. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22(9), 10938–10947 (2014).
[Crossref] [PubMed]

M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express 20(1), 164–172 (2012).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers,” Opt. Express 19(5), 4722–4727 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Physica E (1)

E. F. Pecora, A. Irrera, and F. Priolo, “Ion beam-induced bending of silicon nanowires,” Physica E 44(6), 1074–1077 (2012).
[Crossref]

Small (1)

C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F. J. Tegude, D. Stichtenoth, D. Schwen, and C. Ronning, “Alignment of Semiconductor Nanowires Using Ion Beams,” Small 5(22), 2576–2580 (2009).
[Crossref] [PubMed]

Other (2)

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” CLEO/QELS 1LE, 1293 (2009).
[Crossref]

J. F. Ziegler, “SRIM-The Stopping and Range of Ions in Matter,” http://www.srim.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fabrication of vertically curved silicon wire waveguide. (a) Schematic of silicon cantilever formed at silicon wire waveguide terminal before and after ion implantation (not to scale). (b) Dimensions of silicon waveguide terminal and variation of cantilever length for light propagation test.
Fig. 2
Fig. 2 Scanning electron microscopy (SEM) tilt images of the vertically curved waveguides (VCWs) and their arrays. VCW(40), VCW(20), VCW(10), and VCW(5) in the images indicate the VCWs made using 40-μm, 20-μm, 10-μm, and 5-μm-long silicon wire cantilevers, respectively.
Fig. 3
Fig. 3 Buried vertically curved waveguide (VCW). (a) SEM cross-section view of buried VCW. (b) VCW cross-sections used for light propagation test.
Fig. 4
Fig. 4 Demonstration of vertically curved waveguide (VCW). (a) Schematic of manually adjustable chip testing system for test element group of silicon waveguides with VCW input/output ports. (b) Tilt view near input optical fiber. (c) Tilt view of the output VCW. (d) Wide view of the wafer-level test.
Fig. 5
Fig. 5 (a) Measurement results for gross coupling loss between variously-sized VCWs and lensed optical fibers in CL-band light. (b) Relationship between gross coupling loss and VCW cantilever length.

Metrics