Abstract

The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than −30 dB, and can be potentially used for the long distance OAM optical communication system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-crosstalk orbital angular momentum fiber coupler design

Zhishen Zhang, Jiulin Gan, Xiaobo Heng, Muqiao Li, Jiong Li, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(10) 11200-11209 (2017)

All-fiber stable orbital angular momentum beam generation and propagation

Xiaobo Heng, Jiulin Gan, Zhishen Zhang, Jiong Li, Muqiao Li, Hua Zhao, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 26(13) 17429-17436 (2018)

Linearly polarized orbital angular momentum mode purity measurement in optical fibers

Youchao Jiang, Guobin Ren, Haisu Li, Min Tang, Yu Liu, Yue Wu, Wei Jian, and Shuisheng Jian
Appl. Opt. 56(7) 1990-1995 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  2. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20(9), 9396–9402 (2012).
    [Crossref] [PubMed]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  4. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref] [PubMed]
  5. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett. 30(21), 2864–2866 (2005).
    [Crossref] [PubMed]
  6. Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
    [Crossref]
  7. Shuhui Li and Jian Wang, “Multi-orbital-angular-momentum multi-ring fiber for highdensity space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
    [Crossref]
  8. S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
    [PubMed]
  9. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes,” Opt. Express 22(15), 18044–18055 (2014).
    [Crossref] [PubMed]
  10. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  11. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
    [Crossref]
  12. S. Golowich, “Asymptotic theory of strong spin-orbit coupling in optical fiber,” Opt. Lett. 39(1), 92–95 (2014).
    [Crossref] [PubMed]
  13. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
    [Crossref] [PubMed]
  14. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).
  16. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  17. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
    [Crossref] [PubMed]
  18. Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
    [Crossref] [PubMed]
  19. Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
    [Crossref] [PubMed]
  20. H. Doweidar, “Considerations on the structure and physical properties of B2O3–SiO2 and GeO2–SiO2 glasses,” J. Non-Cryst. Solids 357(7), 1665–1670 (2011).
    [Crossref]

2015 (2)

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
[Crossref]

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

Shuhui Li and Jian Wang, “Multi-orbital-angular-momentum multi-ring fiber for highdensity space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (5)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20(9), 9396–9402 (2012).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

2011 (2)

2006 (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Arrioja, D. M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Bai, N.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Birnbaum, K.

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

Cai, X.

Chitgarha, M. R.

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Dimarcello, F. V.

Djordjevic, S. S.

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Dolinar, S. J.

Doweidar, H.

H. Doweidar, “Considerations on the structure and physical properties of B2O3–SiO2 and GeO2–SiO2 glasses,” J. Non-Cryst. Solids 357(7), 1665–1670 (2011).
[Crossref]

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Fleming, J.

Fontaine, N. K.

Geisler, D. J.

Ghalmi, S.

Golowich, S.

Golowich, S. E.

Gregg, P.

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Jian Wang,

Shuhui Li and Jian Wang, “Multi-orbital-angular-momentum multi-ring fiber for highdensity space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

Kristensen, P.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
[Crossref]

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

LaRochelle, S.

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Li, G. F.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Li, S.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

Liñares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Messaddeq, Y.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Monberg, E.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Ramachandran, S.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
[Crossref]

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, “Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings,” Opt. Lett. 30(21), 2864–2866 (2005).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Richardson, M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Rusch, L. A.

Schulzgen, A.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Scott, R. P.

Shamee, B.

Shuhui Li,

Shuhui Li and Jian Wang, “Multi-orbital-angular-momentum multi-ring fiber for highdensity space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

Su, T.

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Ung, B.

Vaity, P.

Wang, J.

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Wang, L.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Wisk, P.

Xia, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Yan, M. F.

Yan, Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Yang, J. Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Yoo, S. J. B.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, Y. Yue, H. Huang, J. Y. Yang, M. R. Chitgarha, N. Ahmed, M. Tur, S. J. Dolinar, and A. E. Willner, “Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs,” Opt. Lett. 37(17), 3645–3647 (2012).
[Crossref] [PubMed]

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
[Crossref] [PubMed]

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

IEEE Photonics J. (2)

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Shuhui Li and Jian Wang, “Multi-orbital-angular-momentum multi-ring fiber for highdensity space-division multiplexing,” IEEE Photonics J. 5(5), 7101007 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. F. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

H. Doweidar, “Considerations on the structure and physical properties of B2O3–SiO2 and GeO2–SiO2 glasses,” J. Non-Cryst. Solids 357(7), 1665–1670 (2011).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 2334–2536 (2015).
[Crossref]

Phys. Rev. Lett. (2)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The OAM light synthetic formula in fibers. The dash arrows represent the circularly polarizations (left or right); the spiral sectors represent the charge numbers( +l1 , +l+1 , l+1 , and l1 , where l is the order number of the fiber mode). (b) The intrinsic crosstalk of the OAM optical fiber. LCP: the left-handed circularly polarized light; RCP: the right handed circularly polarized light; l±1 represent the charge numbers.
Fig. 2
Fig. 2 The refractive index profile of the graded-index fiber.
Fig. 3
Fig. 3 (a) The effective refractive indices and (b) the chromatic dispersion of the fiber modes.
Fig. 4
Fig. 4 The intensity distributions and polarization characteristics of the synthesized OAM light.
Fig. 5
Fig. 5 The purity of the synthesized OAM light in the designed graded-index fiber and the ring-fiber [6].

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

2 E z r 2 + 1 r E z r + 1 r 2 2 E z φ 2 +[ k 2 n ( r ) 2 β 2 ] E z =0 2 H z r 2 + 1 r H z r + 1 r 2 2 H z φ 2 +[ k 2 n ( r ) 2 β 2 ] H z =0
E r = j [ k 2 n ( r ) 2 β 2 ] [ β E z r + ω μ 0 r H z φ ] E φ = j [ k 2 n ( r ) 2 β 2 ] [ β r E z φ ω μ 0 H z r ] H r = j [ k 2 n ( r ) 2 β 2 ] [ β H z r ω μ 0 n ( r ) 2 r E z φ ] H φ = j [ k 2 n ( r ) 2 β 2 ] [ β r H z φ +ω ε 0 n ( r ) 2 E z r ]
E z ( r )=A F lz ( r )f( lφ ) H z ( r )=C F lz ( r )g( lφ )
V r ± E r e ±j E r o = j [ k 2 n ( r ) 2 β 2 ] [ βA F lz ( r ) r ω μ 0 r Cl F lz ( r ) ] e ±jlφ
V φ ± E φ e ±j E φ o = j [ k 2 n ( r ) 2 β 2 ] [ β r Al F lz ( r )ω μ 0 C F lz ( r ) r ]( ± e ±jlφ )
V x ± = V r ± cosφ V φ ± sinφ = jβA [ k 2 n ( r ) 2 β 2 ] [ ( 1+s )P( r ) e ±j( l1 )φ +( 1s )Q( r ) e ±j( l+1 )φ ]
V y ± = V r ± sinφ+ V φ ± cosφ =± βA [ k 2 n ( r ) 2 β 2 ] [ ( 1+s )P( r ) e ±j( l1 )φ ( 1s )Q( r ) e ±j( l+1 )φ ]
V ± = βA [ k 2 n ( r ) 2 β 2 ] × [ ( ± y j x )( 1+s )P( r ) e ±j( l+1 )φ +( y j x )( 1s )Q( r ) e ±j( l1 )φ ]
E z ( r + )= E z ( r )
F lz ( r + )= F lz ( r )
E φ ( r + )= E φ ( r )
H φ ( r + )= H φ ( r )
βAl{ 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } =ω μ 0 C{ 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) }
s 2 = { 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } 2 l 2 × { 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) } 2
β 2 { 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } 2 l 2 = ω 2 ε 0 μ 0 { n ( r + ) 2 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) n ( r ) 2 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) }× { 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) }
ω 2 ε 0 μ 0 = k 2
β 2 k 2 { 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } = ( r + ) 2 [ k 2 n ( r + ) 2 β 2 ] ( r ) 2 [ k 2 n ( r ) 2 β 2 ]
l 2 { 1 [ k 2 n ( r + ) 2 β 2 ] [ n( r ) n( r + ) ] 2 1 [ k 2 n ( r ) 2 β 2 ] }× { 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } ={ 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) [ n( r ) n( r + ) ] 2 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) }× { 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) }
[ n( r ) n( r + ) ] 2 1
{ 1 [ k 2 n ( r + ) 2 β 2 ] 1 [ k 2 n ( r ) 2 β 2 ] } 2 l 2 ={ 1 [ k 2 n ( r + ) 2 β 2 ] F lz ( r + ) r r F lz ( r + ) 1 [ k 2 n ( r ) 2 β 2 ] F lz ( r ) r r F lz ( r + ) } 2
s 2 =1

Metrics