Abstract

Spiral surface plasmon (SSP) modes that propagate inside a silver (Ag) nanohole are investigated by performing both simulations and theoretical analyses. The SSP modes are formed by a linear combination of two rotating SP eigenmodes of the Ag nanohole in the fast-wave branch. Inside a uniform Ag nanohole, the handedness and the number of strands of the SSP modes are determined by both the component SP eigenmodes and their rotation directions. The spiral pitch of the SSP mode increases with the nanohole radius for a fixed wavelength and is inversely related to the incident wavelength for a fixed nanohole radius. Inside a tapered Ag nanohole, the spiral pitch decreases with the reduction of nanohole radius. However, the azimuth-integrated field energy density increases to a maximum value and then falls. For a tapered Ag-clad fiber capped by a tapered Ag nanorod, the SSP mode reverses its handedness when it passes through the fiber-nanorod interface. Furthermore, using this composite structure, the field energy density of SSP mode that arrives at the tip of the tapered nanorod is largely increased.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic Archimedean spiral modes on concentric metal ring gratings

Yi-Chieh Lai, Bo Han Cheng, Yung-Chiang Lan, and Din Ping Tsai
Opt. Express 24(13) 15021-15028 (2016)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Long-range spiralling surface plasmon modes on metallic nanowires

M. A. Schmidt and P. St.J. Russell
Opt. Express 16(18) 13617-13623 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  4. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57(10), 989–1028 (1994).
    [Crossref]
  5. D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College Press, 2003)
  6. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12(1), 6–18 (1994).
    [Crossref]
  7. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
    [Crossref] [PubMed]
  8. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
    [Crossref]
  9. Y. Wang, X. Ma, M. Pu, X. Li, C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, “Transfer of orbital angular momentum through sub-wavelength waveguides,” Opt. Express 23(3), 2857–2862 (2015).
    [Crossref] [PubMed]
  10. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
    [Crossref]
  11. C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
    [Crossref] [PubMed]
  12. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
    [Crossref]
  13. S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28(2), 525–533 (1992).
    [Crossref]
  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [Crossref] [PubMed]
  15. M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [Crossref] [PubMed]
  16. S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
    [Crossref] [PubMed]
  17. C. M. Chen, C. K. Young, K. R. Chen, and Y. C. Lan, “Spiral surface plasmon modes on uniform and tapered metallic nanorods,” J. Opt. Soc. Am. B 30(9), 2529–2534 (2013).
    [Crossref]
  18. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006).
    [Crossref]
  19. A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
    [Crossref]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).
  23. F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
    [Crossref]

2015 (1)

2013 (1)

2011 (2)

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

2009 (1)

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

2008 (1)

2006 (2)

2005 (1)

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1997 (1)

1994 (3)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57(10), 989–1028 (1994).
[Crossref]

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12(1), 6–18 (1994).
[Crossref]

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

1992 (1)

S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28(2), 525–533 (1992).
[Crossref]

1974 (1)

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Al-Bader, S. J.

S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28(2), 525–533 (1992).
[Crossref]

Bachelot, R.

Bainier, C.

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57(10), 989–1028 (1994).
[Crossref]

Bao, K.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Bartal, G.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Bek, A.

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Blaize, S.

Bouhelier, A.

Castro, M. E.

Catrysse, P. B.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[Crossref]

Chang, C. W.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Chang, S. H.

Chen, C. M.

Chen, K. R.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Courjon, D.

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57(10), 989–1028 (1994).
[Crossref]

Cui, J.

Dawson, M. D.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Díaz-García, M. A.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Economou, E. N.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
[Crossref]

Fan, S.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[Crossref]

Gallego-Gómez, F.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

García-Frutos, E. M.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gomez, L.

Gómez-Lor, B.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Gray, S. K.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gutierrez-Puebla, E.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Hafner, C.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Håkanson, U.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Hua, F.

Huang, C.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Imtaar, M.

S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28(2), 525–533 (1992).
[Crossref]

Jeon, S.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kanibolotsky, A. L.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Kern, K.

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Kobayashi, T.

Lan, Y. C.

Lerondel, G.

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, X.

Liu, M.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Liu, Y.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Luo, X.

Ma, X.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Monge, A.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Morimoto, A.

Nam, S.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Ngai, K. L.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
[Crossref]

Nordlander, P.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Pan, W.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Perepichka, I. F.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Pfeiffer, C. A.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
[Crossref]

Prade, B.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12(1), 6–18 (1994).
[Crossref]

Pu, M.

Quintana, J. A.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Rogers, J. A.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Royer, P.

Russell, P. S. J.

Samuel, I. D. W.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Schmidt, M. A.

Shaw, P. E.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Shin, H.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[Crossref]

Skabara, P. J.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Stefanon, I.

Takahara, J.

Taki, H.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tsiminis, G.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Turnbull, G. A.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Villalvilla, J. M.

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Vinet, J. Y.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12(1), 6–18 (1994).
[Crossref]

Vogelgesang, R.

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Wang, Y.

Y. Wang, X. Ma, M. Pu, X. Li, C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, “Transfer of orbital angular momentum through sub-wavelength waveguides,” Opt. Express 23(3), 2857–2862 (2015).
[Crossref] [PubMed]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Wei, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Wiederrecht, G. P.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xu, H.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Yamagishi, S.

Young, C. K.

Zhang, S.

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Zhang, X.

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

Zhao, B.

Adv. Funct. Mater. (1)

F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, and B. Gómez-Lor, “Very large photoconduction enhancement upon self-Assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21(4), 738–745 (2011).
[Crossref]

Appl. Phys. Lett. (1)

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94(24), 243304 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28(2), 525–533 (1992).
[Crossref]

J. Lightwave Technol. (1)

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12(1), 6–18 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (4)

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10(8), 3038–3051 (1974).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. 105(23), 235501 (2010).
[Crossref] [PubMed]

S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57(10), 989–1028 (1994).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Other (2)

D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College Press, 2003)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulated structures: (a) uniform Ag nanohole, (b) tapered Ag nanohole, (c) tapered Ag-clad fiber with a uniform core and capped by a tapered Ag nanorod, and (d) tapered Ag nanorod.
Fig. 2
Fig. 2 (a) Dispersion relations (frequency vs. wavevector) for HE1, TM0 and HE2 SP eigenmodes inside a uniform Ag nanohole with a = 250 nm and filled with the medium of permittivity of 2.25. (b) and (c) Simulated instant Ez contours in x-y plane for the fast-wave branches of HE1 and HE2, respectively. (with a = 250 nm and λ 0 = 633 nm)
Fig. 3
Fig. 3 (a) and (b) Simulated time-averaged contours of H-field energy density in three-dimensional space and in x-y plane at z = 2880 nm, respectively, for incident counterclockwise HE1 mode and counterclockwise HE2 mode. (c) and (d) Simulated time-averaged contours of H-field energy density in three-dimensional space and in x-y plane at z = 2880 nm, respectively, for incident clockwise HE-1 mode and counterclockwise HE2 mode. (The structure is shown in Fig. 1(a), a = 250 nm and λ 0 = 633 nm)
Fig. 4
Fig. 4 (a) Calculated and simulated spiral pitches as a function of nanohole radius for different incident wavelengths. (b) Calculated and simulated spiral pitches vs. incident wavelength with a = 250 nm. The SSP mode is the same as in Fig. 3(a).
Fig. 5
Fig. 5 (a) Simulated time-averaged contour of H-field energy density in three-dimensional space for SSP mode propagating inside a tapered Ag nanohole. (b) θ-integrated H-field energy density on the inner surface of the tapered nanohole as a function of z. The SSP mode is the same as in Fig. 3(a) with λ 0 = 633 nm.
Fig. 6
Fig. 6 (a) and (b) Simulated time-averaged contours of H-field energy density in three-dimensional space for SSP mode inside the tapered Ag-clad fiber and on the upper tapered Ag nanorod, respectively. (c) Dispersion relations for HE1 and TM0 SP eigenmodes inside a uniform Ag nanohole with the radius of 160 nm and on a uniform Ag nanorod with the radius of 192.7 nm. (The relative permittivity of fiber core is 2.25). Inset: Enlargement of dispersion curves of SP eigenmodes on the uniform Ag nanorod around λ 0 = 633 nm. (d) Simulated time-averaged contours of H-field energy density in three-dimensional space for SSP mode on the tapered Ag nanorod. In (a), (b) and (d), the SSP mode is composed of counterclockwise HE1 mode and TM0 mode with λ 0 = 633 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E z = C n I n ( α d r) e i(±nθβz+ωt) H z = D n K n ( α d r) e i(±nθβz+ωt)
E z = C n I n ( α d a) K n ( α m a) K n ( α m r) e i(±nθβz+ωt) H z = D n I n ( α d a) K n ( α m a) K n ( α m r) e i(±nθβz+ωt)
n 2 a 2 ( ε m α m 2 ε d α d 2 )( 1 α m 2 1 α d 2 )= [ k n ' ( α m a) α m k n ( α m a) I n ' ( α d a) α d I n ( α d a) ][ ε m α m k n ' ( α m a) k n ( α m a) ε d α d I n ' ( α d a) I n ( α d a) ]
ψ= R ±1 (r) e i(±θ β 1 z+ωt) + R 2 (r) e i(2θ β 2 z+ωt+ ϕ 0 )
| ψ | 2 = | R ±1 (r) | 2 + | R 2 (r) | 2 +2| R ±1 (r) || R 2 (r) |cos[( β 1 β 2 )z+mθ+ ϕ 0 ' ]

Metrics