Abstract

Plasmonic transmission lines have great potential to serve as direct interconnects between nanoscale light spots. The guiding of gap plasmons in the slot between adjacent nanowire pairs provides improved propagation of surface plasmon polaritons while keeping strong light confinement. Yet propagation is fundamentally limited by losses in the metal. Here we show a workaround operation of the gap-plasmon transmission line, exploiting both gap and external modes present in the structure. Interference between these modes allows us to take advantage of the larger propagation distance of the external mode while preserving the high confinement of the gap mode, resulting in nanoscale confinement of the optical field over a longer distance. The performance of the gap-plasmon transmission line is probed experimentally by recording the propagation of quantum dots luminescence over distances of more than 4 μm. We observe a 35% increase in the effective propagation length of this multimode system compared to the theoretical limit for a pure gap mode. The applicability of this simple method to nanofabricated structures is theoretically confirmed and offers a realistic way to combine longer propagation distances with lateral plasmon confinement for far field nanoscale interconnects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas

Hongwei Jia, Fan Yang, Ying Zhong, and Haitao Liu
Photon. Res. 4(6) 293-305 (2016)

Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction

Yun-Ting Hung, Chen-Bin Huang, and Jer-Shing Huang
Opt. Express 20(18) 20342-20355 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  4. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
    [Crossref]
  5. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [Crossref]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  7. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
    [Crossref] [PubMed]
  8. R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
    [Crossref]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Phot. 4, 83–91 (2010).
    [Crossref]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [Crossref]
  11. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [Crossref]
  12. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [Crossref] [PubMed]
  13. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
    [Crossref]
  14. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [Crossref] [PubMed]
  15. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [Crossref] [PubMed]
  16. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [Crossref]
  17. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [Crossref]
  18. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [Crossref]
  19. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [Crossref]
  20. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48, 5683–5691 (2009).
    [Crossref] [PubMed]
  21. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [Crossref] [PubMed]
  22. T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
    [Crossref]
  23. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
    [Crossref]
  24. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [Crossref] [PubMed]
  25. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref] [PubMed]
  26. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
    [Crossref] [PubMed]
  27. D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
    [Crossref]
  28. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  29. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
    [Crossref]
  30. D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
    [Crossref] [PubMed]
  31. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
    [Crossref]
  32. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
    [Crossref] [PubMed]
  33. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [Crossref] [PubMed]
  34. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [Crossref]
  35. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
    [Crossref]
  36. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [Crossref] [PubMed]
  37. A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
    [Crossref]
  38. B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
    [Crossref]
  39. C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
    [Crossref] [PubMed]
  40. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
    [Crossref]
  41. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
    [Crossref] [PubMed]
  42. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
    [Crossref] [PubMed]
  43. S. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21, 14591–14605 (2013).
    [Crossref] [PubMed]
  44. P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
    [Crossref] [PubMed]
  45. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
    [Crossref] [PubMed]
  46. H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
    [Crossref]
  47. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
    [Crossref] [PubMed]
  48. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
    [Crossref]
  49. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [Crossref]
  50. A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
    [Crossref] [PubMed]
  51. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [Crossref]
  52. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  53. S. Silver, Microwave Antenna Theory and Design (P. Peregrinus on behalf of the Institution of Electrical EngineersLondon, UK, 1984).
    [Crossref]
  54. Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35, 1160–1162 (2010).
    [Crossref] [PubMed]
  55. G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
    [Crossref]
  56. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]

2013 (4)

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

S. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21, 14591–14605 (2013).
[Crossref] [PubMed]

2012 (2)

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

2011 (1)

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

2010 (3)

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Phot. 4, 83–91 (2010).
[Crossref]

Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35, 1160–1162 (2010).
[Crossref] [PubMed]

2009 (6)

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
[Crossref] [PubMed]

A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48, 5683–5691 (2009).
[Crossref] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[Crossref]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

2008 (8)

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[Crossref] [PubMed]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[Crossref]

2007 (4)

J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
[Crossref] [PubMed]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[Crossref]

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

2006 (5)

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref] [PubMed]

2005 (6)

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (3)

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

1998 (2)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

1997 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[Crossref]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Arbel, D.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Berini, P.

Biagioni, P.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

Boltasseva, A.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Phot. 4, 83–91 (2010).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Bracher, G.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

Brixner, T.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[Crossref]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[Crossref]

Cao, L.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Catrysse, P. B.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

Chang, W.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Chen, A.

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Chen, H. T.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Conway, J. A.

Dalton, L.

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Fan, S.

Fang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Feichtner, T.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

Finley, J. J.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

García de Abajo, F. J.

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[Crossref] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[Crossref]

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Geisler, P.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

Ginzburg, P.

Goetz, S.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Gong, Q.

Gramotnev, D.

D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Phot. 4, 83–91 (2010).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[Crossref] [PubMed]

Gray, S. K.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Gruber, C.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

Gu, Y.

Guo, G. Y.

Halas, N. J.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

He, S.

Hecht, B.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Hohenester, U.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

Huang, C. B.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Huang, J. S.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

Huang, Y.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Jakubeit, C.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kaniber, M.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

Khanal, B. P.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Kolomenski, A.

Kolomenskii, A.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

Krauss, E.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

Kuipers, L. K.

Leitner, A.

Li, X.

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Li, Z.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Link, S.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Liu, L.

Ma, Y.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Manjavacas, A.

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Moreno, E.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Morimoto, A.

Nauert, S.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Nielsen, R. B.

Nishio, K.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Noel, J.

Nordlander, P.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Olson, J.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Onuki, T.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Paul, A.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Pelton, M.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Peng, S.

Peschel, U.

Pile, D.

D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[Crossref]

Pile, D. F. P

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[Crossref] [PubMed]

Polman, A.

Pyayt, A.

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Qiu, M.

Quinten, M.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Razinskas, G.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Rewitz, C.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Rodrigo, S. G.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Romanov, S.

Sahni, S.

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

Scherer, N. F.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Schraml, K.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

Schuessler, H.

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[Crossref]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

Selker, M. D.

Shih, C.-K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Silver, S.

S. Silver, Microwave Antenna Theory and Design (P. Peregrinus on behalf of the Institution of Electrical EngineersLondon, UK, 1984).
[Crossref]

Slaughter, L.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Solis, D.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Sun, S.

Sun, Y.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Swanglap, P.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Szkopek, T.

Takahara, J.

Taki, H.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[Crossref]

Tani, T.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Tian, X.

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

Tokizaki, T.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Tong, L.

Trugler, A.

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

Tsuchiya, T.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Tuchscherer, P.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Verhagen, E.

Vernon, K.

D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[Crossref]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Veronis, G.

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

Watanabe, Y.

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

Wei, H.

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Wen, J.

Wild, B.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Wiley, B.

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Willingham, B.

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

Wu, X. F.

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

Xia, Y.

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Xu, H.

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Yan, M.

Yu, H.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Zhang, S.

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Zheng, W. J.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[Crossref]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

Zubarev, E. R.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

ACS Nano (1)

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472–482 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Gramotnev, K. Vernon, and D. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[Crossref]

Appl. Phys. Lett. (4)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

J. Appl. Phys. (1)

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110, 123106 (2011).
[Crossref]

J. Microscopy (1)

T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microscopy 210, 284–287 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mat. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mat. Today 9, 20–27 (2006).
[Crossref]

Nano Lett. (6)

D. Solis, B. Willingham, S. Nauert, L. Slaughter, J. Olson, P. Swanglap, A. Paul, W. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012).
[Crossref] [PubMed]

C. Gruber, A. Trugler, A. Hohenau, U. Hohenester, and J. R. Krenn, “Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires,” Nano Lett. 13, 4257–4262 (2013).
[Crossref] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[Crossref]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[Crossref] [PubMed]

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10, 1950–1954 (2010).
[Crossref] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9, 41684171 (2009).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Nature Mat. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mat. 2, 229–232 (2003).
[Crossref]

Nature Nanotech. (1)

A. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Nature Phot. (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nature Phot. 2, 496–500 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Phot. 4, 83–91 (2010).
[Crossref]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[Crossref]

Opt. Express (9)

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[Crossref] [PubMed]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[Crossref] [PubMed]

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
[Crossref] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[Crossref] [PubMed]

S. Sun, H. T. Chen, W. J. Zheng, and G. Y. Guo, “Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems,” Opt. Express 21, 14591–14605 (2013).
[Crossref] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[Crossref] [PubMed]

J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

P. Natl. Acad. Sci. (1)

H. Wei, S. Zhang, X. Tian, and H. Xu, “Highly tunable propagating surface plasmons on supported silver nanowires,” P. Natl. Acad. Sci. 110, 4494–4499 (2013).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. B (4)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[Crossref]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[Crossref]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (6)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[Crossref] [PubMed]

P. Geisler, G. Razinskas, E. Krauss, X. F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C. B. Huang, T. Brixner, and B. Hecht, “Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits,” Phys. Rev. Lett. 111, 183901 (2013).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[Crossref]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

S. Silver, Microwave Antenna Theory and Design (P. Peregrinus on behalf of the Institution of Electrical EngineersLondon, UK, 1984).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the experiment. (a) The gold structures under study are lithographed on top of a thin film of ITO and covered with a thin layer of QDs protected with a layer of PMMA. The propagation of QD luminescence is studied for the three plasmonic transmission lines shown in the SEM images: (b) single-wire (SW), (c) double-wire (DW) and (c) double-wire loaded with two gap antennas (DWA). (e) Confocal image of a DWA covered with QDs. The QDs are excited from the top at a fix position (central bright spot), their luminescence is coupled to the structure, and the propagation is detected from the bottom by a scanning objective. Propagation of the luminescence beyond 4 μm is observed at the out-coupling antennas.

Fig. 2
Fig. 2

LDOS theoretical comparison between SW and DW transmission lines. LDOS as a function of parallel wave vector k normalized to the LDOS in vacuum for wavelengths of 770 nm (solid line) and 640 nm (dashed line) for the SW (a) and DW (b) calculated at a distance of 22.5 nm from the metal (in the middle of the gap for the DW). (insets) LDOS spatial profiles normalized by the LDOS in vacuum at 770 nm wavelength for the four modes indicated in (a) and (b). The gap mode of the DW is tightly confined inside the gap while the external mode spreads into the medium. While the first-order mode of the SW is more confined, the second-order mode is stronger.

Fig. 3
Fig. 3

Simulated transmission differences between the SW, DW, and DWA systems. (a) Simulated spectral transmission of the three PTLs normalized in the same way, and obtained upon local excitation by a dipole (λdip = 770 nm). The transmission of the DW (black line) and the DWA (black line with crosses) is practically the same, while the transmission of the SW (red line, ×5) is considerably lower. The emission of the QDs (FWHM marked in gray) matches better the DW/DWA systems. When the polarization of the dipole is parallel to the PTLs, the transmission decreases one order of magnitude for the SW (red dashed line) and two orders of magnitude for the DW/DWA (black dashed line). (b) Simulated (black line) and fitted (red line with crosses) intensity decay profiles for the SW, DW, and DWA systems (top, middle, and bottom, respectively) being locally excited by a dipole located at 4μm from the end of the wires (inset). The simulated intensity decay and the fitted curve used to calculate ZL match almost perfectly.

Fig. 4
Fig. 4

Simulated spatial intensity distribution of the interference in a DWA with length ≈6μm. The source is located at the gap and displaced to the left around 160 nm from the center position. (a) The intensity of the interference bounces from the gap towards the outside of the wires with a beat period of β2β1. (b) The left antenna is located at a position where the maximum of the interference is in the gap, thus strongly localized. (c) The right antenna is located at a position where the maximum is outside the wires, thus the intensity at the gap of the antenna is minimum. The effective figure of merit Feff at the position of the left antenna is higher than at the right antenna.

Fig. 5
Fig. 5

Experimental comparison between DWA and SW systems. Both structures have a length of 5μm. (a) Confocal image of the SW system showing no emission at the ends of the guide. (b) Confocal image of the DWA system showing light emission at the ends of the guide, where the antennas are located. The light spots of the DWA allow us to estimate the propagation length of the system. (c) Experimental intensity profile in logarithmic scale along the DWA (black line) and the SW (red line) obtained by integrating the intensity across the transversal direction between the dotted lines of (a) and (b).

Fig. 6
Fig. 6

Analysis of the spectrally resolved plasmon propagation. (a) Spectrum measured at the position where the QDs are directly excited by the laser (black curve) and at the end (red curve) of the DWA. The simulated spectral transmission of the DWA (gray dotted curve) is plotted for reference. (b) Spectrum measured outside the DWA (blue curve) and spectrum reconstructed (black curve) from the spectra in (a). The good agreement between these spectra indicates that the light being propagated through the DWA is the luminescence of the QDs and not the laser excitation.

Fig. 7
Fig. 7

Propagation distance of the DWA. Relative intensity between the light spot at the center and at the end of the guide plotted against their relative distance. The data are extracted from multiple confocal images of DWA systems with different lengths (between 4 and 8 μm) but similar dimensions. Each of the confocal images gives two points in the graph (i.e., for the two DWA ends). Linear fit of the data points to an exponential decay produces a propagation length of 1.5 μm ± 100 nm for the DWA.

Fig. 8
Fig. 8

DWA covered with a QD layer. SEM image (bottom-left) and confocal image (upright) of the DWA structures. The confocal image shows the homogeneity of the QDs layer.

Fig. 9
Fig. 9

Intensity propagation decay of the two modes and the interference mode in logarithmic scale. (a) intensity propagation for the three systems SW (up), DW (middle) and DWA (bottom) for the first mode (black line), second mode (red line) and the interference between both (blue line). The beating period of the interference mode is given by the difference between the k of each mode. (b) Intensity propagation for the DWA when the relative value of the amplitude of the external mode (A01 black line) and the amplitude of the gap mode (A02 red line) is varied from A01 = A02 (top), A01 = 0.5A02 (middle) and A01 = 0.15A02 (bottom). The interference between modes (blue line) follows the propagation parameters of the stronger mode.

Fig. 10
Fig. 10

Normalized radiated power of a dipole in SW, DW and DWA systems. The dipole is located 4 μm away from the end of the guides at the center of the gap (22.5 nm away from the wire in the case of SW). The power radiated by the dipole in systems DW (black line) and DWA (red line) is practically the same, confirming that the source does not ’see’ the antennas (as expected for PTLs of this length). The power radiated by the dipole in the SW (blue line) is much lower than the other two cases. This was expected from the transmission differences shown in the main text.

Fig. 11
Fig. 11

Simulated resonance behavior of the gap antennas in isolated mode. The height, width and length of each bar is 40 nm, 50 nm and 440 nm respectively. The gap between them is 45 nm. (a) Simulated spatial intensity profile of the fourth order mode of this gap antenna when is fed from the gap. (b) Intensity profile as a function of wavelength for the same gap antenna. The third and fourth order modes are visible (located at wavelengths of 870 nm and 745 nm respectively). The FWHM of the emission spectrum of the QDs is marked in gray showing the overlap with the fourth order mode of the gap antenna.

Fig. 12
Fig. 12

Calculated intrinsic impedance (Z0) of the DW. The real part of the intrinsic impedance (black line - left axis) shows a peak at a wavelength of 810 nm around the resonance point of a length of 110 nm (the width of the wires). The imaginary part of the intrinsic impedance (red line - right axis) also experiments a phase jump around the same wavelength. At the maximum of the emission of the QDs (770 nm) the value of the intrinsic impedance is Z0=268+10j.

Fig. 13
Fig. 13

Testing the propagation of QDs luminescence. Integrated intensity profiles for DWA systems of 5 μm in length under different excitation or detection conditions. (a) Excited at λexc=640 nm with polarization ⊥ to the DWA and detection split into ⊥ (black line) and ‖ (red line) polarizations. (b) Excited at λexc=640 nm with polarization ⊥ (black line) and ‖ (red line) to the DWA (detection of ⊥+‖ polarizations). (c) Excited at λexc=640 nm (black line) and λexc=532 nm (red line) with polarization ⊥ to the DWA. (d) Excited at λexc=640 nm with polarization ⊥ to the DWA before (black line) and after (red line) bleaching of the QDs in the central area. All the test confirm that the QDs luminescence is being propagated through the DWA.

Tables (1)

Tables Icon

Table 1 Characterization parameters of DW and SW PTLs

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

L = 1 2 × Im ( k ) = 1 FWHM LDOS
A int = A 1 + A 2 = e γ c x [ A 02 e j θ 1 e γ m x + A 01 e j θ 2 e γ m x ]
γ c = α c + j β c = α 1 + α 2 2 + j ( β 1 + β 2 2 )
γ m = α m + j β m = α 1 α 2 2 + j ( β 1 β 2 2 )
Z L = Z 0 1 + Γ 1 Γ
losses = Tx ( 500 nm ) Tx ( 4500 nm ) max ( Tx ( 500 nm ) )
QD comp ( end ) = QD ( end ) 1 losses
QD recon = QD ( center ) + QD comp ( end ) max ( QD ( center ) + QD comp ( end ) )
Power = 1 2 surface Re ( P ) d s
Z L = Z 0 1 + Γ 1 Γ
A i = A 0 i e γ i x e j θ i
I TOT = | i = 1 , 2 ( A i ) | 2 = | A 01 e γ 1 x e j θ 1 ( 1 Γ 1 e 2 γ 1 ( L T L x ) ) + A 02 e γ 2 x e j θ 2 | 2
A 1 ( SW ) { A 01 = 8.811 ± 0.138 V / m , α 1 = 8.789 10 5 ± 6.505 10 6 nm 1 , β 1 = 0.01254 ± 2 10 5 nm 1 , θ 1 = 0 rad , | Γ 1 | = 0.1462 ± 6.1 10 3 , θ Γ 1 = 1.726 π ± 9.8 10 2 rad
A 2 ( SW ) { A 02 = 21.73 ± 0.275 V / m , α 2 = 8.749 10 4 ± 9.8 10 6 nm 1 , β 2 = 0.0194 ± 2 10 5 nm 1 , θ 2 = 0.217 ± 1.535 10 2 rad
A 1 ( DW ) { A 01 = 12.89 ± 0.125 V / m , α 1 = 2.717 10 4 ± 8.6 10 6 nm 1 , β 1 = 0.01412 ± 2 10 5 nm 1 , θ 1 = 0 rad , | Γ 1 | = 0.5724 ± 3.4 10 2 , θ Γ 1 = 1.524 π ± 3.15 10 2 rad
A 2 ( DW ) { A 02 = 95.17 ± 0.335 V / m , α 2 = 1.282 10 3 ± 4.5 10 6 nm 1 , β 2 = 0.02406 ± 1.5 10 5 nm 1 , θ 2 = 0.06 π ± 9 10 3 rad
A 1 ( DWA ) { A 01 = 12.76 ± 8.5 2 V / m , α 1 = 2.586 10 4 ± 5.4 10 6 nm 1 , β 1 = 0.01414 ± 1 5 10 5 nm 1 , θ 1 = 0 rad , | Γ 1 | = 0.3838 ± 1.525 10 2 , θ Γ 1 = 0.728 π ± 7.7 10 2 rad
A 2 ( DWA ) { A 02 = 95.52 ± 0.24 V / m , α 2 = 1.287 10 3 ± 3 10 6 nm 1 , β 2 = 0.02409 ± 1.5 10 5 nm 1 , θ 2 = 0.06 π ± 6.9 10 3 rad

Metrics