Abstract

A stable phase demodulation system for diaphragm-based acoustic sensors is reported. The system is based on a modified fiber-optic Sagnac interferometer with a stable quadrature phase bias, which is independent of the parameters of the sensor head. The phase bias is achieved passively by introducing a nonreciprocal frequency shift between the counter-propagating waves, avoiding the use of complicated active servo-control. A 100 nm-thick graphite diaphragm-based acoustic sensor interrogated by the proposed demodulation system demonstrated a minimum detectable pressure level of ~450 µPa/Hz1/2 and an output signal stability of less than 0.35 dB over an 8-hour period. The system may be useful as a universal phase demodulation unit for diaphragm-based acoustic sensors as well as other sensors operating in a reflection mode.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method

Xin Fu, Ping Lu, Wenjun Ni, Hao Liao, Shun Wang, Deming Liu, and Jiangshan Zhang
Opt. Express 25(4) 4429-4437 (2017)

Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection

Yonas Muanenda, Stefano Faralli, Claudio J. Oton, and Fabrizio Di Pasquale
Opt. Express 26(2) 687-701 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Appl. Opt. 16(7), 1761–1762 (1977).
    [Crossref] [PubMed]
  2. J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
    [Crossref]
  3. G. B. Hocker, “Fiber-optic acoustic sensors with increased sensitivity by use of composite structures,” Opt. Lett. 4(10), 320–321 (1979).
    [Crossref] [PubMed]
  4. M. Imai, T. Ohashi, and Y. Ohtsuka, “Fiber-optic Michelson interferometer using an optical power divider,” Opt. Lett. 5(10), 418–420 (1980).
    [Crossref] [PubMed]
  5. E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. SPIE 425, 90–95 (1983).
    [Crossref]
  6. J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
    [Crossref] [PubMed]
  7. K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
    [Crossref]
  8. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
    [Crossref]
  9. M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
    [Crossref]
  10. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [Crossref] [PubMed]
  11. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
    [Crossref]
  12. S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
    [Crossref]
  13. J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  14. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
    [Crossref]
  15. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [Crossref]
  16. A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
    [Crossref] [PubMed]
  17. J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
    [Crossref]
  18. B. Yu and A. Wang, “Grating-assisted demodulation of interferometric optical sensors,” Appl. Opt. 42(34), 6824–6829 (2003).
    [Crossref] [PubMed]
  19. N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout,” IEEE Trans. Instrum. Meas. 47(1), 143–147 (1998).
    [Crossref]
  20. B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
    [Crossref]
  21. K. Kråkenes and K. Bløtekjaer, “Sagnac interferometer for underwater sound detection: noise properties,” Opt. Lett. 14(20), 1152–1154 (1989).
    [Crossref] [PubMed]
  22. J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41(3), 231–233 (1982).
    [Crossref]
  23. Z. Zang, “All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating,” Appl. Opt. 52(23), 5701–5706 (2013).
    [Crossref] [PubMed]
  24. B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
    [Crossref]
  25. P. Fomitchov, J. S. Steckenrider, S. Krishnaswamy, and J. D. Achenbach, Review of Progress Quantitative Non-Destructive Evaluation16b, pp. 2053–2060 (Plenum, 1997).
  26. K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
    [Crossref]
  27. K. Takada, “Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
    [Crossref]
  28. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
    [Crossref]
  29. H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
    [Crossref]
  30. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
    [Crossref]
  31. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
    [Crossref] [PubMed]

2013 (2)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Z. Zang, “All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating,” Appl. Opt. 52(23), 5701–5706 (2013).
[Crossref] [PubMed]

2012 (1)

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

2010 (1)

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

2009 (1)

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

2007 (1)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

2006 (1)

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

2005 (1)

2004 (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

2003 (2)

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

B. Yu and A. Wang, “Grating-assisted demodulation of interferometric optical sensors,” Appl. Opt. 42(34), 6824–6829 (2003).
[Crossref] [PubMed]

2001 (1)

K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
[Crossref]

2000 (1)

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
[Crossref]

1998 (2)

K. Takada, “Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout,” IEEE Trans. Instrum. Meas. 47(1), 143–147 (1998).
[Crossref]

1997 (1)

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

1995 (1)

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
[Crossref]

1993 (1)

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

1990 (2)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
[Crossref] [PubMed]

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
[Crossref]

1989 (1)

1983 (1)

E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. SPIE 425, 90–95 (1983).
[Crossref]

1982 (4)

A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
[Crossref] [PubMed]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41(3), 231–233 (1982).
[Crossref]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

1980 (1)

1979 (1)

1977 (2)

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Appl. Opt. 16(7), 1761–1762 (1977).
[Crossref] [PubMed]

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
[Crossref]

Achenbach, J. D.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
[Crossref]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
[Crossref] [PubMed]

Anderson, S. J.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Araujo, F. M.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Barton, J. S.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

Bhuta, P. G.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
[Crossref]

Bløtekjaer, K.

Bowers, J. E.

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41(3), 231–233 (1982).
[Crossref]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Appl. Opt. 16(7), 1761–1762 (1977).
[Crossref] [PubMed]

Carome, E. F.

Chana, K. S.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Choi, C.-G.

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Choi, H.

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Choi, S.-Y.

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Claus, R. O.

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
[Crossref]

Cooper, K. L.

Culshaw, B.

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
[Crossref] [PubMed]

Dardy, H. D.

Digonnet, M.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

Digonnet, M. J. F.

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
[Crossref]

Dorighi, J. F.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
[Crossref]

Fan, S.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Farias, R. G.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Ferreira, L. A.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Frazao, O.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Furstenau, N.

N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout,” IEEE Trans. Instrum. Meas. 47(1), 143–147 (1998).
[Crossref]

Gander, M. J.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

Gunther, M. F.

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

Han, K. H.

K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
[Crossref]

Ho, H. L.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hocker, G. B.

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Imai, M.

Jeong, H. Y.

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Jin, W.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Johnson, R. L.

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
[Crossref]

Jones, J. D. C.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Jones, T. V.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Kilic, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

Kim, B. Y.

K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
[Crossref]

Kim, J. Y.

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Kino, G.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

Kino, G. S.

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
[Crossref]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Kråkenes, K.

Krishnaswamy, S.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
[Crossref]

Laming, R. I.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
[Crossref]

Lee, C. E.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
[Crossref] [PubMed]

Lee, W. J.

K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
[Crossref]

Lima, S. E. U.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Ma, J.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

MacPherson, W. N.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Miller, M. S.

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

Mills, T. N.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

Miranda, V.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Morkel, P. R.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
[Crossref]

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Murphy, K. A.

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

Ohashi, T.

Ohtsuka, Y.

Payne, D. N.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
[Crossref]

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

Reuben, R. L.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Santos, J. L.

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Schmidt, M.

N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout,” IEEE Trans. Instrum. Meas. 47(1), 143–147 (1998).
[Crossref]

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

Solgaard, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

Stevens, R.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Takada, K.

K. Takada, “Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

Taylor, H. F.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
[Crossref] [PubMed]

Tran, T. A.

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

A. Dandridge and A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7(6), 279–281 (1982).
[Crossref] [PubMed]

Udd, E.

E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. SPIE 425, 90–95 (1983).
[Crossref]

Vakoc, B. J.

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
[Crossref]

Wang, A.

Wang, X.

Xu, J.

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yang, Y.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yu, B.

Zang, Z.

Zhang, E.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41(3), 231–233 (1982).
[Crossref]

Carbon Lett. (1)

H. Choi, J. Y. Kim, H. Y. Jeong, C.-G. Choi, and S.-Y. Choi, “Characterization of chemical vapor deposition-grown graphene films with various etchants,” Carbon Lett. 13(1), 44–47 (2012).
[Crossref]

Electron. Lett. (2)

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26(2), 96–98 (1990).
[Crossref]

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

IEEE J. Quantum Electron. (3)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18(4), 626–665 (1982).
[Crossref]

K. Takada, “Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18(10), 1647–1653 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. H. Han, W. J. Lee, and B. Y. Kim, “Fiber-optic sensor array based on Sagnac interferometer with stable phase bias,” IEEE Photonics Technol. Lett. 13(2), 148–150 (2001).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “A fiber-optic Fabry-Perot acoustic sensor with multi-layer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

IEEE Sens. J. (1)

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fibre-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

IEEE T. Ultrason. Ferr. (1)

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE T. Ultrason. Ferr. 42(5), 820–824 (1995).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

N. Furstenau and M. Schmidt, “Fiber-optic extrinsic Fabry–Perot interferometer vibration sensor with two-wavelength passive quadrature readout,” IEEE Trans. Instrum. Meas. 47(1), 143–147 (1998).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(4), 302–306 (1990).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

J. H. Cole, R. L. Johnson, and P. G. Bhuta, “Fiber-optic detection of sound,” J. Acoust. Soc. Am. 62(5), 1136–1138 (1977).
[Crossref]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Meas. Sci. Technol. (2)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[Crossref]

B. Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17(1), R1–R16 (2006).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. E. U. Lima, O. Frazao, R. G. Farias, F. M. Araujo, L. A. Ferreira, V. Miranda, and J. L. Santos, “Intrinsic and extrinsic fiber Fabry–Perot sensors for acoustic detection in liquids,” Microw. Opt. Technol. Lett. 52(5), 1129–1134 (2010).
[Crossref]

Opt. Fiber Technol. (1)

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber Technol. 6(4), 388–399 (2000).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (2)

K. A. Murphy, M. F. Gunther, R. O. Claus, T. A. Tran, and M. S. Miller, “Optical fiber sensors for measurement of strain and acoustic waves,” Proc. SPIE 1918, 110–120 (1993).
[Crossref]

E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. SPIE 425, 90–95 (1983).
[Crossref]

Other (1)

P. Fomitchov, J. S. Steckenrider, S. Krishnaswamy, and J. D. Achenbach, Review of Progress Quantitative Non-Destructive Evaluation16b, pp. 2053–2060 (Plenum, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic configuration of the modified Sagnac interferometer-based demodulation system. APC: angle polished connector; inset: schematic of the sensor head. Optical frequencies at different locations for (b) CW and (c) CCW waves.
Fig. 2
Fig. 2 Oscilloscope traces of the PD output for fiber delay lines with different lengths around 2 km. Upper trace: φs deviated from 2 + π/2; lower trace: φs equals to 2 + π/2.
Fig. 3
Fig. 3 (a) Output voltage of the demodulation system as a function of applied phase modulation at the frequency of 5 kHz; (b) MDP as a function of phase modulation frequency from 1 to 20 kHz; inset: output frequency spectrum measured with an electrical spectrum analyzer for a phase modulation amplitude of ~1 rad at the frequency of 5 kHz.
Fig. 4
Fig. 4 Output noise spectrum in the frequency range from 0 to 100 kHz. Inset: enlarged noise spectrum in the frequency range from 0 to 20 kHz.
Fig. 5
Fig. 5 Fabrication process of the 100 nm-thick MLG-diaphragm-based acoustic sensor. (a) Flattening the MLG/Ni/MLG film by pressurizing it between two glass slides; (b) coating the periphery of the hollow ceramic sleeve with UV curable liquid gel; (c) curing the gel between the MLG/Ni/MLG film and sleeve; (d) etching away the Ni layer in the MLG/Ni/MLG sample; (e) inserting a ferrule with a SMF fixed at its center into the sleeve to form an air cavity; microscope image of (f) the ferrule sleeve covered with MLG film and (g) the finished sensor head.
Fig. 6
Fig. 6 (a) Measured output spectrum of a diaphragm based sensor for applied acoustic signal amplitude of 800 mPa at the frequency of 5 kHz; (b) output signal fluctuation over duration of ~8 hours.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ s = 2 π n Δ L c ( 2 δ f ) ,
Δ φ = φ s + 2 k u ( t ) - 2 k u ( t + τ ) = φ s + 4 k u 0 sin ( w s τ 2 ) sin [ w s ( t + τ 2 ) ] ,
I ( t ) = I l + I s + I c w + I c c w + 2 I c w I c c w cos ( Δ φ ) = I 0 { 1 + 1 2 cos ( φ s + 4 k u 0 sin ( w s τ 2 ) sin [ w s ( t + τ 2 ) ] ) } ,
I a c 2 k u 0 I 0 sin ( w s τ 2 ) sin [ w s ( t + τ 2 ) ] .
σ 0 2 = 2 e I 0 B + I 0 2 B / Δ v ,
S N R = 2 I 0 sin 2 ( w s τ / 2 ) 2 e B + I 0 B / Δ v ,

Metrics