Abstract

Optical components like resonator or waveguides often have stringent requirements in term of positioning accuracy during packaging. While this can be done routinely in a laboratory environment, permanently positioning and aligning optical elements with nanometer accuracy in a fully packaged device is a challenging endeavor. Here, we demonstrate the use of femtosecond laser-induced modifications in glass for the remote permanent fine-positioning of an optical element with sub-nanometer resolution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica.

Yves Bellouard, Ali A. Said, and Philippe Bado
Opt. Express 13(17) 6635-6644 (2005)

Design of an adjustable bipod flexure for a large-aperture mirror of a space camera

Bei Liu, Wei Wang, Yan-Jun Qu, Xu-Peng Li, Xiao Wang, and Hui Zhao
Appl. Opt. 57(15) 4048-4055 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. H. F. Andreasch, “Konzeption und Entwicklung einer Technologie zur automatisierten Oberflächenmontage optischer Elemente (optical SMD), ” Ph.D. Thesis, EPFL, n° 1591 (1996).
  2. M. Scussat, “Assemblage bidimensionnel de composants optiques miniatures, ” Ph.D. Thesis, EPFL, n° 2179 (2001).
  3. W. Hoving, “Accurate manipulation using laser technology,” Proc. SPIE 3097, 284–295 (1997).
    [Crossref]
  4. M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
    [Crossref]
  5. Y.-C. Hsu, “Novel butterfly type laser module packaging,” J. Laser Micro/Nanoeng. 6(3), 255–258 (2011).
    [Crossref]
  6. M. Geiger and F. Meyer-Pittroff, “Laser beam bending of metallic foils,” Proc. SPIE 4426, 187–190 (2002).
    [Crossref]
  7. S. A. Diamond, “Active-Core-Alignment, ” http://www.diamond-fo.com/technologies/Active-Core-Alignment-A-C-A.html
  8. J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
    [Crossref]
  9. J. H. C. van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “Integration of laser-support fiber adjustment in opto-electronic modules,” in Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd (IEEE, 2008), pp. 803–808.
    [Crossref]
  10. J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
    [Crossref]
  11. J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, and F. H. Peters, “Practical design of lensed fibers for semiconductor laser packaging using laser welding technique,” J. Lightwave Technol. 27(11), 1533–1539 (2009).
    [Crossref]
  12. H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
    [Crossref]
  13. Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
    [Crossref]
  14. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  15. Y. Bellouard, “On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited],” Opt. Mater. Express 1(5), 816–831 (2011).
    [Crossref]
  16. V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines (Basel) 5(3), 697–710 (2014).
    [Crossref]
  17. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  18. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [Crossref]
  19. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
    [Crossref]
  20. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
    [Crossref] [PubMed]
  21. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref] [PubMed]
  22. B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
    [Crossref] [PubMed]
  23. P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20(18), 19978–19989 (2012).
    [Crossref] [PubMed]
  24. S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomech. 8(2), 73–88 (2014).
    [Crossref]
  25. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  26. J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [Crossref] [PubMed]
  27. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
    [Crossref]
  28. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
    [Crossref] [PubMed]
  29. J. A. Squier and M. Müller, “Third-harmonic generation imaging of laser-induced breakdown in glass,” Appl. Opt. 38(27), 5789–5794 (1999).
    [Crossref] [PubMed]
  30. C. B. Schaffer, J. Aus der Au, E. Mazur, and J. A. Squier, “Micromachining and material change characterization using femtosecond laser oscillators,” Proc. SPIE 4633, 112–118 (2002).
    [Crossref]
  31. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  32. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26(19), 1516–1518 (2001).
    [Crossref] [PubMed]
  33. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
    [Crossref]
  34. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  35. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
    [Crossref] [PubMed]
  36. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002).
    [Crossref] [PubMed]
  37. J. Drs, T. Kishi, and Y. Bellouard, “Laser-assisted morphing of complex three dimensional objects,” Opt. Express 23(13), 17355–17366 (2015).
    [Crossref] [PubMed]
  38. J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
    [Crossref]

2015 (3)

2014 (2)

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines (Basel) 5(3), 697–710 (2014).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomech. 8(2), 73–88 (2014).
[Crossref]

2013 (2)

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

2009 (4)

J. H. Song, H. N. J. Fernando, B. Roycroft, B. Corbett, and F. H. Peters, “Practical design of lensed fibers for semiconductor laser packaging using laser welding technique,” J. Lightwave Technol. 27(11), 1533–1539 (2009).
[Crossref]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[Crossref] [PubMed]

H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
[Crossref]

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

2006 (2)

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

2002 (3)

M. Geiger and F. Meyer-Pittroff, “Laser beam bending of metallic foils,” Proc. SPIE 4426, 187–190 (2002).
[Crossref]

J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
[Crossref]

E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002).
[Crossref] [PubMed]

2001 (2)

1999 (1)

1998 (2)

J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

1997 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

W. Hoving, “Accurate manipulation using laser technology,” Proc. SPIE 3097, 284–295 (1997).
[Crossref]

1996 (1)

Bado, P.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

Baumberg, J. J.

Bellouard, Y.

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
[Crossref] [PubMed]

J. Drs, T. Kishi, and Y. Bellouard, “Laser-assisted morphing of complex three dimensional objects,” Opt. Express 23(13), 17355–17366 (2015).
[Crossref] [PubMed]

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines (Basel) 5(3), 697–710 (2014).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
[Crossref]

Y. Bellouard, “On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited],” Opt. Mater. Express 1(5), 816–831 (2011).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

Beresna, M.

Booth, M. J.

Brakenhoff, G.

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Bricchi, E.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

Champion, A.

Cheng, Y.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Colomb, T.

Corbett, B.

Davis, K. M.

Dekkers, E. C. A.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Depeursinge, C.

Drs, J.

Dugan, M.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

Faidel, H.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Fang, Z.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Fernando, H. N. J.

Fujimoto, J. G.

Geiger, M.

M. Geiger and F. Meyer-Pittroff, “Laser beam bending of metallic foils,” Proc. SPIE 4426, 187–190 (2002).
[Crossref]

Grenier, J. R.

Gu, C.

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

Hartl, I.

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomech. 8(2), 73–88 (2014).
[Crossref]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomech. 8(2), 73–88 (2014).
[Crossref]

Herman, P. R.

Hirao, K.

Ho, S.

Hoffmann, D.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

Hoving, W.

W. Hoving, “Accurate manipulation using laser technology,” Proc. SPIE 3097, 284–295 (1997).
[Crossref]

Hsu, Y.-C.

Y.-C. Hsu, “Novel butterfly type laser module packaging,” J. Laser Micro/Nanoeng. 6(3), 255–258 (2011).
[Crossref]

Ippen, E. P.

Jovanovic, N.

Juodkazis, S.

Kazansky, P.

Kazansky, P. G.

Khoe, G. D.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Khoe, G.-D.

J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
[Crossref]

Kishi, T.

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Klappauf, B. G.

Koonen, A. M. J.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Kowalevicz, A. M.

Leers, M.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Liao, Y.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Liermann, E.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Lin, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Liu, H.

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

Luttmann, J.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Marcinkevicius, A.

Marshall, G. D.

Maselli, V.

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

McMillen, B.

Meyer-Pittroff, F.

M. Geiger and F. Meyer-Pittroff, “Laser beam bending of metallic foils,” Proc. SPIE 4426, 187–190 (2002).
[Crossref]

Miesner, J.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Mills, J. D.

Minoshima, K.

Misawa, H.

Miura, K.

Miwa, M.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Muller, M.

Müller, M.

J. A. Squier and M. Müller, “Third-harmonic generation imaging of laser-induced breakdown in glass,” Appl. Opt. 38(27), 5789–5794 (1999).
[Crossref] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Nishii, J.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

Peters, F. H.

Petkov, G. D.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Plukker, S. G. L.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Qiang, W.

H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
[Crossref]

Qiao, L.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Roycroft, B.

Said, A.

Said, A. A.

Salter, P. S.

Shen, H.

H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
[Crossref]

Shen, Z.

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

Song, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Song, J. H.

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

Squier, J. A.

Steel, M. J.

Sugimoto, N.

Tang, J.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Tielen, V.

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines (Basel) 5(3), 697–710 (2014).
[Crossref]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

Van Zantvoort, J. H. C.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
[Crossref]

Waardt, H.

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Waardt, H. D.

J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
[Crossref]

Wang, M.

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

Wang, X.

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
[Crossref]

Watanabe, M.

Westphalen, T.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

Williams, R. J.

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

Winzen, M.

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Withford, M. J.

Appl. Opt. (1)

Appl. Phys. A – Mater. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A – Mater. 77(1), 109–111 (2003).
[Crossref]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922 (1997).
[Crossref]

I. J. Optomech. (1)

J. Tang, J. Lin, J. Song, Z. Fang, M. Wang, Y. Liao, L. Qiao, and Y. Cheng, “On-chip tuning of the resonant wavelength in a high-Q microresonator integrated with a microheater,” I. J. Optomech. 9(2), 187–194 (2015).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. H. C. van Zantvoort, G.-D. Khoe, and H. D. Waardt, “Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment,” IEEE J. Sel. Top. Quant. 8(6), 1331–1340 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. C. Van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Petkov, G. D. Khoe, A. M. J. Koonen, and H. Waardt, “Lensed fiber-array assembly with individual fiber fine positioning in the submicrometer range,” IEEE J. Sel. Top. Quantum Electron. 12(5), 931–939 (2006).
[Crossref]

Int. J. Optomech. (1)

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomech. 8(2), 73–88 (2014).
[Crossref]

J. Laser Micro/Nanoeng. (1)

Y.-C. Hsu, “Novel butterfly type laser module packaging,” J. Laser Micro/Nanoeng. 6(3), 255–258 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Micromachines (Basel) (1)

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines (Basel) 5(3), 697–710 (2014).
[Crossref]

Opt. Eng. (1)

H. Shen, X. Wang, and W. Qiang, “Online postwelding shift compensation in butterfly laser module packages based on welding spot distance,” Opt. Eng. 48(12), 124301 (2009).
[Crossref]

Opt. Express (10)

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

J. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14(18), 8360–8366 (2006).
[Crossref] [PubMed]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref] [PubMed]

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
[Crossref] [PubMed]

P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20(18), 19978–19989 (2012).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[Crossref] [PubMed]

J. Drs, T. Kishi, and Y. Bellouard, “Laser-assisted morphing of complex three dimensional objects,” Opt. Express 23(13), 17355–17366 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Z. Shen, C. Gu, H. Liu, and X. Wang, “An experimental study of overlapping laser shock micro-adjustment using a pulsed Nd:YAG laser,” Opt. Laser Technol. 54, 110–119 (2013).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (2)

Proc. SPIE (3)

M. Geiger and F. Meyer-Pittroff, “Laser beam bending of metallic foils,” Proc. SPIE 4426, 187–190 (2002).
[Crossref]

W. Hoving, “Accurate manipulation using laser technology,” Proc. SPIE 3097, 284–295 (1997).
[Crossref]

M. Leers, M. Winzen, E. Liermann, H. Faidel, T. Westphalen, J. Miesner, J. Luttmann, and D. Hoffmann, “Highly precise and robust packaging of optical components,” Proc. SPIE 8244, 824404 (2012).
[Crossref]

Other (5)

W. H. F. Andreasch, “Konzeption und Entwicklung einer Technologie zur automatisierten Oberflächenmontage optischer Elemente (optical SMD), ” Ph.D. Thesis, EPFL, n° 1591 (1996).

M. Scussat, “Assemblage bidimensionnel de composants optiques miniatures, ” Ph.D. Thesis, EPFL, n° 2179 (2001).

S. A. Diamond, “Active-Core-Alignment, ” http://www.diamond-fo.com/technologies/Active-Core-Alignment-A-C-A.html

J. H. C. van Zantvoort, S. G. L. Plukker, E. C. A. Dekkers, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “Integration of laser-support fiber adjustment in opto-electronic modules,” in Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd (IEEE, 2008), pp. 803–808.
[Crossref]

C. B. Schaffer, J. Aus der Au, E. Mazur, and J. A. Squier, “Micromachining and material change characterization using femtosecond laser oscillators,” Proc. SPIE 4633, 112–118 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of the concept of repositioning through femtosecond laser-controlled volume expansion: we consider a typical assembly task (optical fiber-light coupling) that requires positioning an optical element with respect to another one along up to six axes. In a goal-oriented assembly strategy, a measurable metric is defined to assess the optimal alignment, based on the function of the device, as opposed to defining absolute positioning based on the actual objects dimensions and tolerances. Here, a femtosecond laser is used to permanently deform a glass element forming a positioning flexure kinematics supporting the optical element to be adjusted. Thanks to non-linear absorption, this controlled deformation can be achieved in the three dimensions, making possible the implementation of repositioning tasks according six degrees of freedoms.
Fig. 2
Fig. 2 Examples of rotational and translational fine motions that can be induced by localized femtosecond laser volume exposure (the blue zones in the schematic). The equivalent kinematic is shown next to it. The first two illustrate the example of a beam bending mimicking a pivot joint, while the two others show a linear element that expands or retracts depending on which region is exposed. These are just simple illustrations. Complex displacements can be obtained by exposing more complex volumes and/or using different actuator shapes.
Fig. 3
Fig. 3 A computer-assisted drawing (CAD) of a proof-of-concept as well as close-up microscope pictures of a fabricated specimen are shown. This device is a one axis linear flexure stage onto which a U-shape element is connected to. The flexure itself further consists of four notch hinges. The U-shape element, later referred as ‘one-time actuator’ is position so that a small elongation of this element induces a larger displacement of the flexure, through a simple lever mechanism. The equivalent kinematics of this mechanism is illustrated (right side).
Fig. 4
Fig. 4 Linear stage (A) working principle: a laser-pattern consisting of a set of adjacent lines (B) is written across the width of the one-time actuator beam (C), to create uniform elongation along the actuator axis. In this experiment, after writing the pattern, the induced displacement is measured without removing the specimen from the laser platform (measurement point (A)) to ensure high measuring accuracy of the laser-induced displacements.
Fig. 5
Fig. 5 Top: Typical THG intensity profiles: a) when moving the laser into the surface (#1), b) when moving across a glass edge (#2). Bottom: Strategy use to measure the displacement induced in the flexure. In this example, we measure the displacement of the linear axis. The surface is first precisely located (point A) based on the onset for THG emission. Second, the laser is moved by a fix-amount from point A. Then, the laser is moved inside the structure toward the glass edge. Point B is recorded when THG is detected when moving the laser again into the material. The same procedure is applied for point C. Finally, the measured relative displacement (dX) is deduced from the knowledge of points B and C.
Fig. 6
Fig. 6 Microscope close-up view of the actuator for extreme cases (A-C) of over-stressed specimen (cases 1 and 2 in Table 1) and for an homogeneous crack-free loaded specimen (D) seen in cross-polarized image. Cracks are clearly visible (A,C) and in the extreme case (B), the structure collapsed. Cracks are oriented along the laser line written direction.
Fig. 7
Fig. 7 Photoeleastic measurements performed on the test specimens. The photoelastic images were taken from various locations of interest on the specimen. Inset 1 shows the connection between the actuator and the linear stage, inset 2 one of the upper hinge and inset 3 one set of laser-affected zones.

Tables (1)

Tables Icon

Table 1 Volume expansion and equivalent displacement induced per written line for four different experiments.

Metrics