Abstract

One kind of novel grayscale photomask based on Metal-transparent-metallic-oxides (MTMOs) system fabricated by laser direct writing was demonstrated recently. Here, a multilayer oxidation model of In-In2O3 film with a glass substrate was proposed to study the pulsed laser-induced oxidation mechanism. The distribution of the electromagnetic field in the film is calculated by the transfer matrix method. Temperature fields of the model are simulated based on the heat transfer equations with the Finite-Difference Time-Domain method. The oxidation kinetics process is studied based on the laser-induced Cabrera-Mott theory. The simulated oxidation processes are consistent with the experimental results, which mean that our laser-induced oxidation model can successfully interpret the fabrication mechanism of MTMO grayscale photomasks.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of the sub-wavelength fabrication of MTMO grayscale photomasks by direct laser writing

Feng Xia, Xinzheng Zhang, Meng Wang, Sanming Yi, Qian Liu, and Jingjun Xu
Opt. Express 22(14) 16889-16896 (2014)

MTMO grayscale photomask

Chuan Fei Guo, Jianming Zhang, Junjie Miao, Yongtao Fan, and Qian Liu
Opt. Express 18(3) 2621-2631 (2010)

Grayscale photomask fabricated by laser direct writing in metallic nano-films

Chuan Fei Guo, Sihai Cao, Peng Jiang, Ying Fang, Jianming Zhang, Yongtao Fan, Yongsheng Wang, Wendong Xu, Zhensheng Zhao, and Qian Liu
Opt. Express 17(22) 19981-19987 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
    [Crossref]
  2. G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
    [Crossref]
  3. G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
    [Crossref]
  4. D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
    [Crossref]
  5. J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
    [Crossref]
  6. G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
    [Crossref]
  7. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17, 19981–19987 (2009).
    [Crossref] [PubMed]
  8. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34, 2820–2822 (2009).
    [Crossref] [PubMed]
  9. C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2010).
    [Crossref] [PubMed]
  10. Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO2 micro-devices fabricated by laser direct writing,” Opt. Express 19, 17390–17395 (2011).
    [Crossref] [PubMed]
  11. J. Zhang, C. Guo, Y. Wang, J. Miao, Y. Tian, and Q. Liu, “Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks,” Appl. Opt. 51, 6606–6611 (2012).
    [Crossref] [PubMed]
  12. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [Crossref]
  13. C. Wu, “Method of making high energy beam sensitive glasses,” United States Patent5,078,771 (January7, 1992).
  14. N. Cabrera and N. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12, 163–184 (1949).
    [Crossref]
  15. M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: a review,” Prog. Mater Sci. 54, 981–1057 (2009).
    [Crossref]
  16. F. Xia, X. Zhang, M. Wang, S. Yi, Q. Liu, and J. Xu, “Numerical analysis of the sub-wavelength fabrication of mtmo grayscale photomasks by direct laser writing,” Opt. Express 22, 16889–16896 (2014).
    [Crossref] [PubMed]
  17. C. F. Guo, “Structural and functional studies of metal nanofilm based on laser direct writing,” Ph. D. thesis, Graduate University of Chinese Academy of Sciences (2011).
  18. Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
    [Crossref]
  19. A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57, 437 (1985).
    [Crossref]
  20. N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
    [Crossref]
  21. P. Ágoston and K. Albe, “Ab initio modeling of diffusion in indium oxide,” Phys. Rev. B 81, 195205 (2010).
    [Crossref]
  22. R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
    [Crossref]
  23. J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
    [Crossref] [PubMed]
  24. M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
    [Crossref]
  25. R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
    [Crossref]
  26. M. Wakaki, T. Shibuya, and K. Kudo, Physical Properties and Data of Optical Materials (Chemical Rubber Company, 2007).
    [Crossref]
  27. O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
    [Crossref]
  28. E. Cordfunke and E. Westrum, “The heat capacity and derived thermophysical properties of In-In2O3 from 0 to 1000 K,” J. Phys. Chem. Solids 53, 361–365 (1992).
    [Crossref]
  29. D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
    [Crossref]
  30. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).
  31. L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
    [Crossref]
  32. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref] [PubMed]
  33. V. N. Tokarev and A. F. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86, 2836–2846 (1999).
    [Crossref]
  34. H. Hu, “Study on the mechanism of nanofabrication through laser induced thermal oxidation,” M.S. thesis, Nankai University (2011).

2014 (5)

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[Crossref]

F. Xia, X. Zhang, M. Wang, S. Yi, Q. Liu, and J. Xu, “Numerical analysis of the sub-wavelength fabrication of mtmo grayscale photomasks by direct laser writing,” Opt. Express 22, 16889–16896 (2014).
[Crossref] [PubMed]

J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
[Crossref] [PubMed]

M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

2013 (1)

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

2012 (1)

2011 (2)

Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO2 micro-devices fabricated by laser direct writing,” Opt. Express 19, 17390–17395 (2011).
[Crossref] [PubMed]

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

2010 (3)

P. Ágoston and K. Albe, “Ab initio modeling of diffusion in indium oxide,” Phys. Rev. B 81, 195205 (2010).
[Crossref]

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

C. F. Guo, J. Zhang, J. Miao, Y. Fan, and Q. Liu, “MTMO grayscale photomask,” Opt. Express 18, 2621–2631 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
[Crossref]

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

2006 (1)

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

2005 (1)

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

2004 (1)

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[Crossref]

2003 (1)

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

1999 (2)

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
[Crossref]

V. N. Tokarev and A. F. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86, 2836–2846 (1999).
[Crossref]

1998 (1)

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

1997 (1)

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

1992 (1)

E. Cordfunke and E. Westrum, “The heat capacity and derived thermophysical properties of In-In2O3 from 0 to 1000 K,” J. Phys. Chem. Solids 53, 361–365 (1992).
[Crossref]

1985 (1)

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57, 437 (1985).
[Crossref]

1973 (1)

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

1949 (1)

N. Cabrera and N. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12, 163–184 (1949).
[Crossref]

Ágoston, P.

P. Ágoston and K. Albe, “Ab initio modeling of diffusion in indium oxide,” Phys. Rev. B 81, 195205 (2010).
[Crossref]

Albe, K.

P. Ágoston and K. Albe, “Ab initio modeling of diffusion in indium oxide,” Phys. Rev. B 81, 195205 (2010).
[Crossref]

Alfimov, M.

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Atkinson, A.

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57, 437 (1985).
[Crossref]

Bagaturyants, A.

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Bansal, N. P.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).

Baran, J. D.

J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
[Crossref] [PubMed]

Bazhanov, D.

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Brardan, D.

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

Cabrera, N.

N. Cabrera and N. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12, 163–184 (1949).
[Crossref]

Cai, N.

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

Cao, S.

Chang, M.

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

Chapman, G.

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[Crossref]

Chapman, G. H.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[Crossref]

J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
[Crossref]

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

Choo, C.

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

Cordfunke, E.

E. Cordfunke and E. Westrum, “The heat capacity and derived thermophysical properties of In-In2O3 from 0 to 1000 K,” J. Phys. Chem. Solids 53, 361–365 (1992).
[Crossref]

Doremus, R. H.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).

Dykes, J.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

Dykes, J. M.

J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
[Crossref]

Fan, Y.

Fang, Y.

Fischer, R.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Gronbeck, H.

J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
[Crossref] [PubMed]

Guilmeau, E.

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

Guo, C.

Guo, C. F.

Haneda, H.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Hellman, A.

J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
[Crossref] [PubMed]

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Hu, H.

H. Hu, “Study on the mechanism of nanofabrication through laser induced thermal oxidation,” M.S. thesis, Nankai University (2011).

Ikuma, Y.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Inganäs, O.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
[Crossref]

Jiang, P.

Jürss, M.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Kamiya, M.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Kaplan, A. F.

V. N. Tokarev and A. F. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86, 2836–2846 (1999).
[Crossref]

Knizhnik, A.

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Koyama, R. Y.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Kudo, K.

M. Wakaki, T. Shibuya, and K. Kudo, Physical Properties and Data of Optical Materials (Chemical Rubber Company, 2007).
[Crossref]

Liu, Q.

Maignan, A.

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

Medenbach, O.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Miao, J.

Minibaev, R.

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Mio, M.

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

Mott, N.

N. Cabrera and N. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12, 163–184 (1949).
[Crossref]

Müller, K.

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

Okumura, N.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Peng, J.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[Crossref]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

Pettersson, L. A.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
[Crossref]

Plesa, C.

J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
[Crossref]

Poon, D.

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

Poon, D. K.

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

Qarehbaghi, R.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[Crossref]

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Ramanathan, S.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: a review,” Prog. Mater Sci. 54, 981–1057 (2009).
[Crossref]

Raveau, B.

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Ren, T.

Roche, S.

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[Crossref]

Roman, L. S.

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
[Crossref]

Rossman, G. R.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Sakaguchi, I.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Sankaranarayanan, S. K.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: a review,” Prog. Mater Sci. 54, 981–1057 (2009).
[Crossref]

Sawada, Y.

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

Shannon, R.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Shibuya, T.

M. Wakaki, T. Shibuya, and K. Kudo, Physical Properties and Data of Optical Materials (Chemical Rubber Company, 2007).
[Crossref]

Siritanon, T.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Smith, N. V.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Spicer, W. E.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Starr, D. E.

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

Subramanian, M.

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Tian, Y.

Tokarev, V. N.

V. N. Tokarev and A. F. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86, 2836–2846 (1999).
[Crossref]

Tsuchiya, M.

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: a review,” Prog. Mater Sci. 54, 981–1057 (2009).
[Crossref]

Tu, Y.

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[Crossref]

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Wakaki, M.

M. Wakaki, T. Shibuya, and K. Kudo, Physical Properties and Data of Optical Materials (Chemical Rubber Company, 2007).
[Crossref]

Wang, C.

M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
[Crossref]

Wang, J.

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

Wang, M.

M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
[Crossref]

F. Xia, X. Zhang, M. Wang, S. Yi, Q. Liu, and J. Xu, “Numerical analysis of the sub-wavelength fabrication of mtmo grayscale photomasks by direct laser writing,” Opt. Express 22, 16889–16896 (2014).
[Crossref] [PubMed]

Wang, Y.

Westrum, E.

E. Cordfunke and E. Westrum, “The heat capacity and derived thermophysical properties of In-In2O3 from 0 to 1000 K,” J. Phys. Chem. Solids 53, 361–365 (1992).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Wu, C.

C. Wu, “Method of making high energy beam sensitive glasses,” United States Patent5,078,771 (January7, 1992).

Xia, F.

Xu, J.

Xu, W.

Yi, S.

Zhang, J.

Zhang, X.

F. Xia, X. Zhang, M. Wang, S. Yi, Q. Liu, and J. Xu, “Numerical analysis of the sub-wavelength fabrication of mtmo grayscale photomasks by direct laser writing,” Opt. Express 22, 16889–16896 (2014).
[Crossref] [PubMed]

M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
[Crossref]

Zhang, Z.

Zhao, Z.

Zhou, G.

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

M. Wang, C. Wang, Y. Tian, J. Zhang, C. Guo, X. Zhang, and Q. Liu, “Study on optical and electric properties of ultrafine-grained indium films,” Appl. Surf. Sci. 296, 209–213 (2014).
[Crossref]

J. Appl. Phys. (2)

L. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487 (1999).
[Crossref]

V. N. Tokarev and A. F. Kaplan, “An analytical modeling of time dependent pulsed laser melting,” J. Appl. Phys. 86, 2836–2846 (1999).
[Crossref]

J. Electrochem. Soc. (1)

Y. Ikuma, M. Kamiya, N. Okumura, I. Sakaguchi, H. Haneda, and Y. Sawada, “Oxygen diffusion in single-crystal In-In2O3 and tin-doped In-In2O3,” J. Electrochem. Soc. 145, 2910–2913 (1998).
[Crossref]

J. Phys. Chem. Solids (1)

E. Cordfunke and E. Westrum, “The heat capacity and derived thermophysical properties of In-In2O3 from 0 to 1000 K,” J. Phys. Chem. Solids 53, 361–365 (1992).
[Crossref]

Mater. Res. Bull. (1)

O. Medenbach, T. Siritanon, M. Subramanian, R. Shannon, R. Fischer, and G. R. Rossman, “Refractive index and optical dispersion of in2o3, inbo3 and gahnite,” Mater. Res. Bull. 48, 2240–2243 (2013).
[Crossref]

Nanotechnol. Russ. (1)

R. Minibaev, A. Bagaturyants, D. Bazhanov, A. Knizhnik, and M. Alfimov, “First-principles investigation of the electron work function for the (001) surface of indium oxide in2o3 and indium tin oxide (ito) as a function of the surface oxidation level,” Nanotechnol. Russ. 5, 185–190 (2010).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

P. Ágoston and K. Albe, “Ab initio modeling of diffusion in indium oxide,” Phys. Rev. B 81, 195205 (2010).
[Crossref]

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Phys. Rev. Lett. (2)

N. Cai, G. Zhou, K. Müller, and D. E. Starr, “Tuning the limiting thickness of a thin oxide layer on al (111) with oxygen gas pressure,” Phys. Rev. Lett. 107, 035502 (2011).
[Crossref]

J. D. Baran, H. Gronbeck, and A. Hellman, “Mechanism for limiting thickness of thin oxide films on aluminum,” Phys. Rev. Lett. 112, 146103 (2014).
[Crossref] [PubMed]

Proc. SPIE (7)

G. H. Chapman, Y. Tu, J. Dykes, M. Mio, and J. Peng, “Creating direct-write gray-scale photomasks with bimetallic thin film thermal resists,” Proc. SPIE 5256, 400–411 (2003).
[Crossref]

G. Chapman, Y. Tu, and J. Peng, “Creating 3D structures with a direct-write grayscale photomask made from Sn/In bimetallic films,” Proc. SPIE 5339, 321–332 (2004).
[Crossref]

G. H. Chapman, J. Dykes, D. Poon, C. Choo, J. Wang, J. Peng, and Y. Tu, “Creating precise 3D microstructures using laser direct-write bimetallic thermal resist grayscale photomasks,” Proc. SPIE 5713, 247–258 (2005).
[Crossref]

D. K. Poon, G. H. Chapman, C. Choo, M. Chang, J. Wang, and Y. Tu, “Real-time optical characterization of laser oxidation process in bimetallic direct write gray scale photomasks,” Proc. SPIE 6106, 61060G (2006).
[Crossref]

J. M. Dykes, C. Plesa, and G. H. Chapman, “Enhancing direct-write laser control techniques for bimetallic grayscale photomasks,” Proc. SPIE 6883, 688312 (2008).
[Crossref]

G. H. Chapman, R. Qarehbaghi, and S. Roche, “Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication,” Proc. SPIE 8973, 897307 (2014).
[Crossref]

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Prog. Mater Sci. (1)

M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, “Photon-assisted oxidation and oxide thin film synthesis: a review,” Prog. Mater Sci. 54, 981–1057 (2009).
[Crossref]

Rep. Prog. Phys. (1)

N. Cabrera and N. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12, 163–184 (1949).
[Crossref]

Rev. Mod. Phys. (1)

A. Atkinson, “Transport processes during the growth of oxide films at elevated temperature,” Rev. Mod. Phys. 57, 437 (1985).
[Crossref]

Solid State Commun. (1)

D. Brardan, E. Guilmeau, A. Maignan, and B. Raveau, “In-In2O3:Ge, a promising n-type thermoelectric oxide composite,” Solid State Commun. 146, 97–101(2008).
[Crossref]

Other (5)

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Elsevier, 2013).

M. Wakaki, T. Shibuya, and K. Kudo, Physical Properties and Data of Optical Materials (Chemical Rubber Company, 2007).
[Crossref]

H. Hu, “Study on the mechanism of nanofabrication through laser induced thermal oxidation,” M.S. thesis, Nankai University (2011).

C. F. Guo, “Structural and functional studies of metal nanofilm based on laser direct writing,” Ph. D. thesis, Graduate University of Chinese Academy of Sciences (2011).

C. Wu, “Method of making high energy beam sensitive glasses,” United States Patent5,078,771 (January7, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic view of a four-layer deposition indium film on a glass substrate illuminated with green pulsed laser and oxygen ions are adsorbed on the surface of grains; (b) The simplistic model of the sample. The surface oxygen ions can diffuse into each layer surface almost simultaneously due to the grain boundary effect.
Fig. 2
Fig. 2 (a) The electron energy-level diagrams of In, In2O3 and In2O3 surface; (b) the electronic equilibrium energy-level diagrams of this system in natural oxidation, (c) the electronic equilibrium energy-level diagrams of this system in laser induced oxidation.
Fig. 3
Fig. 3 Localized oxidation regions at the laser power of 2.0 mW, 2.5 mW and 3.0 mW, respectively. The background colors refer to the temperatures. The oxide thicknesses begin to increase at the power of 2.5 mW.
Fig. 4
Fig. 4 The temperature field and oxide distribution in the sample at the laser power of 10.0 mW after 1 µs pulsed laser-induced oxidation. The oxidation rate is an exponential function of Mott potential and temperature, both of which are determined by the Gaussian distribution of laser intensity.
Fig. 5
Fig. 5 The oxidation degree and optical density versus laser power. The oxidation degree in our model is the proportion of oxide areas to the film areas with the radius of 100 nm. Dots, squares and triangles represent the simulated oxide proportion, the experimental oxide proportion from Ref. 34, and the simulated optical density, respectively.

Tables (1)

Tables Icon

Table 1 Thermal and optical parameters adopted in the model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d L / d t = a ν exp ( W k T ) exp ( q a V M 2 k T L ) ,
V = γ I ,
I ( r , t ) = { 0 t < 0 2 P π ω 2 exp ( 2 r 2 ω 2 ) 0 < t < τ p 0 t > τ p ,
ρ [ c + Δ H m δ [ T T m ] ] T t = ( k T ) + Q ,
V = V 0 I I 0 ,

Metrics