Abstract

We demonstrate a new security feature for visual control of the authenticity of optical security features — the change of the images when the optical element is turned by 180 degrees (“switch-180°”). The diffractive optical element has an asymmetric microrelief structure resulting from the asymmetry of the scattering pattern. The phase function of the diffractive optical element is computed in terms of Fresnel's scalar wave model. We developed efficient algorithms for computing the structure of flat optical elements to produce the switch effect. A sample of flat optical element for the “switch-180” effect has been developed using electron-beam lithography. The effectiveness of the development is illustrated by the photos and the video captured from a real sample. The visual “switch-180°” effect is easy to control allowing secure anti-counterfeit protection of the optical security feature developed. The new security feature is already used to protect IDs and excise stamps.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffractive optical element for creating visual 3D images

Alexander Goncharsky, Anton Goncharsky, and Svyatoslav Durlevich
Opt. Express 24(9) 9140-9148 (2016)

Fabrication of diffraction based security elements using direct laser interference patterning

Florian Rößler, Tim Kunze, and Andrés Fabián Lasagni
Opt. Express 25(19) 22959-22970 (2017)

Cylindrical computer-generated hologram for displaying 3D images

Anton Goncharsky and Svyatoslav Durlevich
Opt. Express 26(17) 22160-22167 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Van Renesse, Optical Document Security (Artech House, 2005).
  2. A. V. Goncharsky and A. A. Goncharsky, Computer Optics and Computer Holography (Moscow University, 2004).
  3. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, (SPIE Optical Engineering Press, 1997), Ch. 2.5.
  4. C. Palmer, Diffraction Grating Handbook, 6th ed. (Newport Corporation, 2005).
  5. T. Suleski and R. Kolste, “Fabrication trends for free-space microoptics,” J. Lightwave Technol. 23(2), 633–646 (2005).
    [Crossref]
  6. B. Sheng, X. Xu, Y. Liu, Y. Hong, H. Zhou, T. Huo, and S. Fu, “Vacuum-ultraviolet blazed silicon grating anisotropically etched by native-oxide mask,” Opt. Lett. 34(8), 1147–1149 (2009).
    [Crossref] [PubMed]
  7. P. Mouroulis, F. Hartley, D. Wilson, V. White, A. Shori, S. Nguyen, M. Zhang, and M. Feldman, “Blazed grating fabrication through gray-scale Xray lithography,” Opt. Express 11(3), 270–281 (2003).
    [Crossref] [PubMed]
  8. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41(13), 2390–2393 (2002).
    [Crossref] [PubMed]
  9. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
    [Crossref]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  11. A. N. Tikhonov, “The solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).
  12. C. W. Groetsch and A. Neubauer, “Regularization of ill-posed problems: Optimal parameter choice in finite dimensions,” J. Approx. Theory 58(2), 184–200 (1989).
    [Crossref]
  13. A. N. Tikhonov, A. V. Goncharsky, and V. V. Stepanov, “Inverse problems in image processing,” in Ill-Posed Problems in the Natural Sciences, pp. 220–232 (Mir Publishers, 1987).
  14. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Springer Netherlands, 1994).
  15. D. C. O’Shea, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).
  16. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, “Random phase-free kinoform for large objects,” Opt. Express 23(13), 17269–17274 (2015).
    [Crossref] [PubMed]
  17. H. Zhang, H. Liu, Z. Lu, and H. Zhang, “Modified phase function model for kinoform lenses,” Appl. Opt. 47(22), 4055–4060 (2008).
    [Crossref] [PubMed]
  18. H. C. Hunt and J. S. Wilkinson, “Kinoform microlenses for focusing into microfluidic channels,” Opt. Express 20(9), 9442–9457 (2012).
    [Crossref] [PubMed]
  19. L. Alianelli, K. J. S. Sawhney, R. Barrett, I. Pape, A. Malik, and M. C. Wilson, “High efficiency nano-focusing kinoform optics for synchrotron radiation,” Opt. Express 19(12), 11120–11127 (2011).
    [Crossref] [PubMed]
  20. C. Romero, R. Borrego-Varillas, A. Camino, G. Mínguez-Vega, O. Mendoza-Yero, J. Hernández-Toro, and J. R. Vázquez de Aldana, “Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses,” Opt. Express 19(6), 4977–4984 (2011).
    [Crossref] [PubMed]

2015 (1)

2012 (1)

2011 (2)

2009 (1)

2008 (1)

2005 (1)

2003 (1)

2002 (1)

1989 (1)

C. W. Groetsch and A. Neubauer, “Regularization of ill-posed problems: Optimal parameter choice in finite dimensions,” J. Approx. Theory 58(2), 184–200 (1989).
[Crossref]

1969 (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[Crossref]

1963 (1)

A. N. Tikhonov, “The solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).

Alianelli, L.

Barrett, R.

Borrego-Varillas, R.

Camino, A.

Endo, Y.

Feldman, M.

Fu, S.

Groetsch, C. W.

C. W. Groetsch and A. Neubauer, “Regularization of ill-posed problems: Optimal parameter choice in finite dimensions,” J. Approx. Theory 58(2), 184–200 (1989).
[Crossref]

Hamamoto, T.

Hartley, F.

Hasegawa, S.

Hernández-Toro, J.

Hirayama, R.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[Crossref]

Hiyama, D.

Hong, Y.

Hunt, H. C.

Huo, T.

Ito, T.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[Crossref]

Kakue, T.

Kolste, R.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[Crossref]

Liu, H.

Liu, Y.

Lu, Z.

Malik, A.

Mendoza-Yero, O.

Mínguez-Vega, G.

Mouroulis, P.

Nagahama, Y.

Neubauer, A.

C. W. Groetsch and A. Neubauer, “Regularization of ill-posed problems: Optimal parameter choice in finite dimensions,” J. Approx. Theory 58(2), 184–200 (1989).
[Crossref]

Nguyen, S.

Oikawa, M.

Pape, I.

Romero, C.

Sano, M.

Sawhney, K. J. S.

Sheng, B.

Shimobaba, T.

Shiono, T.

Shori, A.

Sugie, T.

Suleski, T.

Takahara, K.

Tikhonov, A. N.

A. N. Tikhonov, “The solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).

Vázquez de Aldana, J. R.

White, V.

Wilkinson, J. S.

Wilson, D.

Wilson, M. C.

Xu, X.

Zhang, H.

Zhang, M.

Zhou, H.

Appl. Opt. (2)

Dokl. Akad. Nauk SSSR (1)

A. N. Tikhonov, “The solution of ill-posed problems and the regularization method,” Dokl. Akad. Nauk SSSR 151(3), 501–504 (1963).

IBM J. Res. Develop. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150–155 (1969).
[Crossref]

J. Approx. Theory (1)

C. W. Groetsch and A. Neubauer, “Regularization of ill-posed problems: Optimal parameter choice in finite dimensions,” J. Approx. Theory 58(2), 184–200 (1989).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (1)

Other (8)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

R. L. Van Renesse, Optical Document Security (Artech House, 2005).

A. V. Goncharsky and A. A. Goncharsky, Computer Optics and Computer Holography (Moscow University, 2004).

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography, (SPIE Optical Engineering Press, 1997), Ch. 2.5.

C. Palmer, Diffraction Grating Handbook, 6th ed. (Newport Corporation, 2005).

A. N. Tikhonov, A. V. Goncharsky, and V. V. Stepanov, “Inverse problems in image processing,” in Ill-Posed Problems in the Natural Sciences, pp. 220–232 (Mir Publishers, 1987).

A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Springer Netherlands, 1994).

D. C. O’Shea, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (774 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Scheme of the observation of image switching in the case of the turn of the optical element.
Fig. 2
Fig. 2 Image switch effect in the case of the 90° turn: (a) φ = 0°, (b) φ = 90°, (c) φ = 180°.
Fig. 3
Fig. 3 Partitioning of the optical element into elementary areas.
Fig. 4
Fig. 4 Symmetric and asymmetric microrelief areas.
Fig. 5
Fig. 5 Scattering pattern for elementary areas with asymmetric microrelief.
Fig. 6
Fig. 6 The 180° image switch-effect: (a) φ = 0, (b) φ = 180° (see Visualization 1).
Fig. 7
Fig. 7 Dependence of functional Rn on the number n of iterations.
Fig. 8
Fig. 8 Fragments of the microrelief of the optical element: (a) asymmetric, (b) symmetric

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ G i u(ξ,η,00)exp[ ikφ(ξ,η) ]exp[ ik (xξ) 2 + (yη) 2 2f ]dξdη =u( x,y,f ).
Aφ=F( x,y ).
F( x,y )={ C 1 ,(x,y) Q 1 C 2 ,(x,y) Q 2 , C 1 >> C 2 .
Aφ=| γ G i u(ξ,η,00)exp[ ikφ(ξ,η) ]exp[ ik (xξ) 2 + (yη) 2 2f ]dξdη |.
w(x,y)=Φ{v}(x,y)= k 2πf G v(ξ,η)exp[ ik (xξ) 2 + (yη) 2 2f ]dξdη .
v ˜ (k) =Φ{ v (k) }(x,y)= W k (x,y)exp[ik φ 1 (k) (x,y)].
w (k) ( x,y ) = A 1 exp[ ik φ 1 (k) ( x,y ) ].
w ˜ (k) (x,y)= Φ 1 { w (k) }(x,y)= V k (x,y)exp[ik φ 0 (k+1) (x,y)].
v (k+1) ( x,y )= A 0 ( x,y ) exp[ ik φ 0 (k+1) ( x,y ) ].

Metrics