Abstract

This article aims to study the varying diffraction spectrum phenomenon influenced by surface plasmon of nanomaterials. Experiments used silver nanoparticles to build the echelon-like grating as test samples, where the grating spacing of line pattern is 10 μm and within the width of silver nanoparticles line is 5 μm alternately. In this work, the silver stripes with gradient thickness were first formed line pattern alternately with glancing angle deposition and photolithography, and then annealed at temperature of 250 °C for 3 mins to fabricate the silver nanoparticles as bowl-like forms. Thicknesses of the silver nanoparticles in the echelon-like grating increase from 0 nm to 40 nm and their diameters grow from 0 nm to 35 nm with quasilinear increment simultaneously. Analyzing the varying diffraction spectrum was focused on observing the first order diffraction by changing the beam size and the probe position of the incident light. The significant results show that the bigger the incident light beam size, the larger the peak wavelength difference (Δλ) of the two first order diffractions. Moreover, the peak spectrum is shifted to long wavelength and Δλ is diminished by probing area with big size of nanoparticles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metallic nanocluster gratings generated by nearfield coupling of localized surface plasmons

Hyong Sik Won and Seok Ho Song
Opt. Express 14(24) 11814-11822 (2006)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings

Seung Ho Choi, Sung June Kim, and Kyung Min Byun
Appl. Opt. 48(15) 2924-2931 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
    [Crossref] [PubMed]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  4. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
    [Crossref]
  5. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
    [Crossref] [PubMed]
  6. J. Kottmann, O. Martin, D. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6(11), 213–219 (2000).
    [Crossref] [PubMed]
  7. S. Daniel, K. Saastamoinen, T. Saastamoinen, J. Rahomäki, A. T. Friberg, and T. D. Visser, “Dynamic control of optical transmission through a nano-slit using surface plasmons,” Opt. Express 23(17), 22512–22519 (2015).
    [Crossref] [PubMed]
  8. A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
    [Crossref] [PubMed]
  9. L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256–2282 (2012).
    [Crossref] [PubMed]
  10. M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
    [Crossref] [PubMed]
  11. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  13. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  14. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  15. W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
    [Crossref]
  16. S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [Crossref] [PubMed]
  17. S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
    [Crossref]
  18. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [Crossref]
  19. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  20. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
    [Crossref]
  21. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, 1986).
  22. K. K. Sharma, Optics: Principles and Applications (Elsevier, 2006).
  23. Y. Tachikawa, “Spectral analysis of transmission echelon grating filters for photonic networks,” Opt. Rev. 6(2), 131–138 (1999).
    [Crossref]
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 2004).
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  26. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  27. Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
    [Crossref] [PubMed]
  28. A. Ahmadivand, N. Pala, and D. Ö. Güney, “Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters,” Opt. Express 23(11), A682–A691 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
[Crossref] [PubMed]

2013 (2)

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

2012 (1)

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256–2282 (2012).
[Crossref] [PubMed]

2010 (2)

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

2008 (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

2007 (1)

S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

2006 (1)

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref] [PubMed]

2005 (3)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2002 (2)

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

2000 (2)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

J. Kottmann, O. Martin, D. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6(11), 213–219 (2000).
[Crossref] [PubMed]

1999 (1)

Y. Tachikawa, “Spectral analysis of transmission echelon grating filters for photonic networks,” Opt. Rev. 6(2), 131–138 (1999).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Ahmadivand, A.

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Apuzzo, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Blaize, S.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Brongersma, M. N.

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Bruyant, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Chelnokov, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Cosnier, S.

M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
[Crossref] [PubMed]

Dagens, B.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Daniel, S.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Dykman, L.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256–2282 (2012).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fang, Z.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Février, M.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Friberg, A. T.

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Güney, D. Ö.

Halas, N. J.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Holzinger, M.

M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Khlebtsov, N.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256–2282 (2012).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kottmann, J.

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Le Goff, A.

M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Lérondel, G.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Li, Z.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Liz-Marzán, L. M.

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref] [PubMed]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Martin, O.

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[Crossref]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[Crossref]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Pala, N.

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Rahomäki, J.

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Saastamoinen, K.

Saastamoinen, T.

Salas-Montiel, R.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Schultz, S.

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Smith, D.

Sobhani, A.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tachikawa, Y.

Y. Tachikawa, “Spectral analysis of transmission echelon grating filters for photonic networks,” Opt. Rev. 6(2), 131–138 (1999).
[Crossref]

Visser, T. D.

Wang, Y.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[Crossref]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, K.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Zhu, X.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86(18), 181108 (2005).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Chem. Rev. (1)

S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41(6), 2256–2282 (2012).
[Crossref] [PubMed]

Front Chem. (1)

M. Holzinger, A. Le Goff, and S. Cosnier, “Nanomaterials for biosensing applications: a review,” Front Chem. 2, 63 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[Crossref]

Langmuir (1)

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Nano Lett. (1)

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Nanoscale (1)

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5(20), 9897–9901 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Rev. (1)

Y. Tachikawa, “Spectral analysis of transmission echelon grating filters for photonic networks,” Opt. Rev. 6(2), 131–138 (1999).
[Crossref]

Phys. Rev. B (1)

S. A. Maier, M. N. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Science (4)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-VCH, 2004).

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, 1986).

K. K. Sharma, Optics: Principles and Applications (Elsevier, 2006).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of the echelon-like grating, where the labels of 0, + 1, and −1 represent the locations of zero and two first order diffractions respectively.

Fig. 2
Fig. 2

Schematic diagram shows a top view of the apparatus for optical measurements.

Fig. 3
Fig. 3

Relationship between thickness and position of the coated Ag film with and without annealing on the echelon-like grating.

Fig. 4
Fig. 4

The SEM images of the echelon-like grating focused on the Ag nanoparticles stripe at positions of x = 3, 5, 7, and 9 mm respectively, where the insets at top-right are grating and the corresponding positions of the nanoparticles stripe on grating.

Fig. 5
Fig. 5

The intensities of + 1 and −1 first order diffractions via echelon-like grating excited by visible light with wavelength range of 400 ~800 nm respectively.

Fig. 6
Fig. 6

Curves between sizes of the incident light beam and peak wavelength of two first order diffractions, where the inset is relationship of the peak wavelength difference (Δλ) relative to the light beam size.

Fig. 7
Fig. 7

Curves between probe position of the incident light and peak wavelength of two first order diffractions, where the inset is relationship of the peak wavelength difference (Δλ) relative to the light probe position.

Fig. 8
Fig. 8

SEM images photographed at positions of (a) x = 1 mm, (b) x = 3 mm, (c) x = 5 mm, (d) x = 7 mm, (e) x = 9 mm, and (f) x = 1 mm, respectively

Fig. 9
Fig. 9

Relationship between absorbance and wavelength.

Metrics