Abstract

Abstract: Expanding bandwidths and arbitrary control of technology remain key issues in the field of electromagnetic waves, especially in terahertz (THz) wave. In this paper, we propose a novel method to achieve broadband low-scattering THz characteristics with wide-angle and polarization independence by a 2-bit flexible and nonabsorptive coding metasurface. The coding metasurface is composed of four digital elements based on double cross metallic line for “00”, “01”, “10”, and “11.” The reflection phase difference of neighboring elements is about 90° over a broad THz frequency band and wide incident angles. The low scattering coefficients below –10 dB were achieved over a wide frequency band from 0.8 THz to 1.5 THz when the incident angle is less than 50° by coding the four elements sequences. This superior property is maintained when the flexible coding metasurface is wrapped around a metallic cylinder with different dimensions. These results present a novel method to control THz waves freely and demonstrate significant scientific value in practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces

Li Jiu-sheng, Zhao Ze-jiang, and Yao Jian-quan
Opt. Express 25(24) 29983-29992 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  2. Y. M. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
    [Crossref]
  3. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  4. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
    [PubMed]
  5. S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
    [Crossref] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  7. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
    [Crossref] [PubMed]
  8. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  9. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  10. Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
    [Crossref]
  11. J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
    [Crossref]
  12. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  13. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  14. L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
    [Crossref]
  15. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
    [Crossref] [PubMed]
  16. Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
    [Crossref] [PubMed]
  17. M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
    [Crossref]
  18. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref] [PubMed]
  19. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [Crossref] [PubMed]
  20. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  21. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  22. M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
    [Crossref]
  23. R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  24. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
    [Crossref] [PubMed]
  25. B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
    [Crossref]
  26. H. S. Lui, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and A. D. Rakić, “Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser,” Opt. Lett. 39(9), 2629–2632 (2014).
    [Crossref] [PubMed]
  27. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).
  28. B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
    [Crossref]
  29. K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
    [Crossref]
  30. H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
    [Crossref]
  31. S. L. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
    [Crossref]
  32. J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  33. G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).
  34. M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).
  35. Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
    [Crossref] [PubMed]
  36. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
    [Crossref] [PubMed]
  37. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [Crossref]
  38. S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  39. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  40. C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
    [Crossref]
  41. Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
    [Crossref] [PubMed]
  42. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  43. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
    [Crossref]
  44. Y. S. Zhang and Z. H. Han, “Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material,” AIP Adv. 5(1), 017113 (2015).
    [Crossref]
  45. H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
    [Crossref]
  46. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc IEEE Conf. Neural Networks IV 4, 1942–1948 (1995).
  47. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]

2015 (12)

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
[Crossref]

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Y. S. Zhang and Z. H. Han, “Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material,” AIP Adv. 5(1), 017113 (2015).
[Crossref]

H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
[Crossref]

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

2014 (15)

H. S. Lui, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and A. D. Rakić, “Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser,” Opt. Lett. 39(9), 2629–2632 (2014).
[Crossref] [PubMed]

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

2013 (7)

Y. M. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

S. L. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

2012 (4)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

2010 (1)

2009 (1)

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

2005 (1)

2004 (1)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

1995 (1)

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc IEEE Conf. Neural Networks IV 4, 1942–1948 (1995).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Al-Naib, I.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Alù, A.

Álvarez, H. F.

H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
[Crossref]

Azad, A. K.

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Bai, B. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Bai, X.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Bertling, K.

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bryllert, T.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Cai, B.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Cao, W.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C. H.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Chang, S.

Chang, S. J.

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Chen, B. J.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Chen, H. B.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. T.

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Chen, H. Y.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Chen, L.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Chen, M.

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

Chen, P.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Chen, S.

Chen, T.

S. L. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X. Z.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Cheng, B. B.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Chowdhury, D. R.

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Cong, L. Q.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Cos Gómez, M. E.

H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
[Crossref]

Cui, T. J.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Davies, A. G.

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dean, P.

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Ding, F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Dong, X.

Du, C.

Eberhart, R. C.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc IEEE Conf. Neural Networks IV 4, 1942–1948 (1995).

Engheta, N.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Fan, F.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fu, J. H.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, H.

Gao, W.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grady, N. K.

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Gu, X. M.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Han, Z. H.

Y. S. Zhang and Z. H. Han, “Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material,” AIP Adv. 5(1), 017113 (2015).
[Crossref]

He, Q.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, S. L.

S. L. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

He, Y. T.

H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
[Crossref]

Heras, F. L.

H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
[Crossref]

Heyes, J. E.

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hoshino, K.

Hu, C. G.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Hua, H. Q.

H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
[Crossref]

Huang, C.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Huang, L. L.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Huang, W.-Q.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Indjin, D.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jiang, G.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Jiang, Y. S.

H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
[Crossref]

Jin, G. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[Crossref]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kennedy, J.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc IEEE Conf. Neural Networks IV 4, 1942–1948 (1995).

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Khanna, S. P.

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kono, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lachab, M.

Lee, Y.

Li, J.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
[Crossref]

Li, X.-F.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Li, Y. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Liang, M. Y.

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lim, Y. L.

Linfield, E. H.

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Liu, X. X.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Liu, Y. M.

Y. M. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Lui, H. S.

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Luo, X.

Luo, X. G.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Lv, Y. L.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y. G.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Mehdi, I.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Ng, K. B.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Pang, Y.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pei, Z.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Peng, Y.

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pi, Y. M.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pu, M. B.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qu, S.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Qu, S. B.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Qu, S. W.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Rahmat-Samii, Y.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Rakic, A. D.

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Shen, Y.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Shi, C.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Shi, H.

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Shu, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

Singh, R. J.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Sun, W. J.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Taimre, T.

Tan, Q. F.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thomas, B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Valavanis, A.

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, B.-X.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, C.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, C. T.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Wang, G.-Z.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, J.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Wang, J. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Wang, L.-L.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, X.

Wang, X. H.

Wang, Y.

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Wang, Y. Q.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Withayachumnankul, W.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Wu, P.

Wu, P. F.

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

Wu, Q.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Wu, W. W.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Xie, L.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Xu, Z.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Yang, C.

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

Yang, G. H.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Ye, Y. Q.

Yi, H.

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

Ying, Y.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zang, X.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Zentgraf, T.

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhai, X.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Zhang, A.

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

Zhang, A. X.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, B.

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
[Crossref]

Zhang, C. L.

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

Zhang, H.

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

Zhang, J. Q.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Zhang, W. L.

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Y. M. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

Zhang, Y. S.

Y. S. Zhang and Z. H. Han, “Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material,” AIP Adv. 5(1), 017113 (2015).
[Crossref]

Zhao, J.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, R.

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

Zhao, Y. J.

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

Zhao, Z. Y.

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Zhou, L.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Zhu, J. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, Y.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Zhuang, S.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

AIP Adv. (1)

Y. S. Zhang and Z. H. Han, “Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material,” AIP Adv. 5(1), 017113 (2015).
[Crossref]

AIP Advances (1)

M. B. Pu, P. Chen, C. T. Wang, Y. Q. Wang, Z. Y. Zhao, C. G. Hu, C. Huang, and X. G. Luo, “Broadband anomalous reflection based on gradient low-Q meta-surface,” AIP Advances 3, 052136 (2013).

Appl. Phys. Lett. (7)

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

C. Shi, X. Zang, Y. Wang, L. Chen, B. Cai, and Y. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

R. J. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, and W. L. Zhang, “Ultrasensitive terahertz sensing with high-Q fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

S. Liu, H. B. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Y. M. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

J. E. Heyes, W. Withayachumnankul, N. K. Grady, D. R. Chowdhury, A. K. Azad, and H. T. Chen, “Hybrid metasurface for ultra-broadband terahertz modulation,” Appl. Phys. Lett. 105(18), 181108 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Sensors J. (1)

B. Zhang, Y. M. Pi, and J. Li, “Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results,” IEEE Sensors J. 15(1), 290–299 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (3)

S. L. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

B. B. Cheng, G. Jiang, C. Wang, and C. Yang, “Real-time imaging with a 140 GHz inverse synthetic aperture radar,” IEEE Trans. Terahertz Sci. Technol. 3(5), 594–605 (2013).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for stand off personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

J. Appl. Phys. (2)

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115, 17E523 (2014).

Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, “An extremely wideband and lightweight metamaterial absorber,” J. Appl. Phys. 117(22), 224503 (2015).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (3)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

M. Y. Liang, C. L. Zhang, R. Zhao, and Y. J. Zhao, “Experimental 0.22 THz stepped frequency radar system for ISAR imaging,” J. Infrared Millim. Terahertz Waves 35(9), 780–789 (2014).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, “An approach for sub-second imaging of concealed objects using terahertz (THz) radar,” J. Infrared Millim. Terahertz Waves 30, 1297–1307 (2009).

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Light Sci. Appl. (2)

L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Materials (Basel) (1)

H. F. Álvarez, M. E. Cos Gómez, and F. L. Heras, “A six-fold symmetric metamaterial absorber,” Materials (Basel) 8(4), 1590–1603 (2015).
[Crossref]

Nano Lett. (2)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nature (1)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Chen, F. Fan, P. F. Wu, H. Zhang, and S. J. Chang, “Active graphene plasmonic grating for terahertz beam scanning device,” Opt. Commun. 348, 66–70 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc IEEE Conf. Neural Networks IV (1)

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc IEEE Conf. Neural Networks IV 4, 1942–1948 (1995).

Prog. Electromagn. Res. B (1)

H. Q. Hua, Y. S. Jiang, and Y. T. He, “High-frequency method for terahertz radar cross section of conductive targets in free space,” Prog. Electromagn. Res. B 59, 193–204 (2014).
[Crossref]

Sci. Rep. (4)

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

S. W. Qu, W. W. Wu, B. J. Chen, H. Yi, X. Bai, K. B. Ng, and C. H. Chan, “Controlling dispersion characteristics of terahertz metasurface,” Sci. Rep. 5, 9367 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Coding metasurface and double cross metallic line coding particles. (a) Schematic of a 2-bit coding metasurface. (b) Schematic of the whole unit cell. (c) Four basic “00”, “01”, “10”, and “11” digital elements. For the “01” element, w = 8 μm, L = 56 μm, for the “10” element, w = 8 μm, L = 86 μm, for the “11” element, w = 16 μm, L = 120 μm, and D = 120 μm.
Fig. 2
Fig. 2 Simulated reflection spectra and reflection-phase differences of different elements. (a) The simulated reflection of “10” elements. (b) The simulated reflection-phase difference of “00,” “01,” “10,” and “11” elements at normal incidence angle. (c) The simulated reflection-phase difference of “00” and “10” elements at different incident angles. (d) The reflection spectra of the 2-bit coding metasurface for TE and TM polarizations at normal angle. (e) The reflection spectra of the 2-bit curved coding metasurface wrapped around a metallic cylinder with the diameter of 8 mm for TE and TM polarizations at normal angle.(f) Schematic of the 1D sequences.
Fig. 3
Fig. 3 Scattering patterns of the flat 2-bit coding metasurface for normal incidence. Three-dimensional scattering patterns of the metasurface at (a) 0.4, (b) 0.6, (c) 1.4, and (d) 1.6 THz. Scattering patterns of the metasurface on the xoy-plane at (e) 0.4, (f) 0.6, (g) 1.4, and (h) 1.6 THz. Scattering patterns of the metallic plate on the xoy-plane at (i) 0.4, (j) 0.6, (k) 1.4, and (l) 1.6 THz.
Fig. 4
Fig. 4 Measurement results of the 2-bit THz coding metasurface over a wide frequency band under different incidence angles. (a) Microscopic image of a sample portion. (b) The whole coding metasurface sample. Measured reflection spectra of the flat metasurface for (c) TE and (d) TM polarizations. Reflection coefficient maps of the flat metasurface for (e) TE and (f) TM polarizations. Reflection coefficient maps of the curved metasurface wrapped around a metallic cylinder with the diameter of 37 mm for (g) TE and (h) TM polarizations.
Fig. 5
Fig. 5 Simulated results for the curved 2-bit THz coding metasurface wrapped around a metallic cylinder. Far-field patterns of the metasurface at (a) 0.6, (b) 0.8, (c) 1.4, and (d) 1.6 THz. Metallic cylinder with a diameter of 4 mm. Magnetic field distributions Hz for a metallic cylinder and the curved metasurface at 0.6 (e, f) THz and (g, h) 1.4 THz. (e, g) Only metallic cylinder. (f, h) Metasurface wrapped around a metallic cylinder with a diameter of 1 mm.
Fig. 6
Fig. 6 Measurement results of the flat and curved THz 2-bit coding metasurface over a wide frequency under an incidence angle of 13°. Scattering coefficients maps of the curved metasurface wrapped around a metallic cylinder with a diameter of 37 mm for (a) TE and (b) TM polarizations. Scattering coefficient maps of the flat metasurface for (c) TE and (d) TM polarizations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f(θ,ϕ)= f e (θ,ϕ) m=1 N n=1 N exp{ i{ ϕ(m,n)+KDsin[(m 1 2 )cosϕ+(n 1 2 )sinϕ]}}
Dir(θ,φ)=4π| f (θ,φ) 2 |/ 0 2π | f (θ,φ) 2 | sinθd θdφ
E= n A n e ik( r r n ' ) = n A n e i( 2πsinθ λ ( x x n ' )+ 2πcosθ λ z )

Metrics