Abstract

The pre-compensation on power fading effect of a colorless laser diode (CLD) carried 40-Gbit/s 256-QAM OFDM transmission during 25-km is demonstrated. By offsetting the DC bias to thrice the threshold (Ith) and increasing the injection to 0 dBm, the CLD not only enhances its coherence but also suppresses modulation throughput declination and reduces the relative intensity related noise floor to −50 dBm. Modeling the receiving power of the delivered 256-QAM OFDM subcarriers is established, indicating that raising the bias to 3Ith down-shifts the power fading induced notch to 8.8 GHz. This further degrades the OFDM subcarrier peak power by −2.9 dB after 25-km transmission, and the corresponded signal-to-noise ratio (SNR), error vector magnitude (EVM) and bit-error-rate (BER) are 26.1 dB, 4.9% and 6.5 × 10−3, respectively. Pre-leveling the OFDM subcarrier as well as the modulation throughput effectively compromises the over-bias enlarged power fading to promote transmission. With a pre-leveled power slope of 1.5 dB/GHz for 256-QAM OFDM data, the modulation throughput declination of the high biased CLD significantly mitigates under BtB transmission, enabling the receiving sensitivity at −7.2 dBm with SNR, EVM and BER of 29.9 dB, 3.1% and 1.5 × 10−4, respectively. Increasing the pre-leveling slope to 3.2 dB/GHz minimizes the fiber dispersion induced power fading, which improves the receiving SNR, EVM and BER to 27.4 dB, 4.2% and 2.6 × 10−3, respectively, with receiving sensitivity of −3 dBm and power penalty of 4.2 dB after 25-km SMF transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF

Yi-Cheng Li, Yu-Chieh Chi, Min-Chi Cheng, I-Cheng Lu, Jason Chen, and Gong-Ru Lin
Opt. Express 21(14) 16722-16735 (2013)

TO-56-can packaged colorless WRC-FPLD for QAM OFDM transmission at 42 Gbit/s over 25-km SMF

Min-Chi Cheng, Yu-Chieh Chi, Cheng-Ting Tsai, Chung-Yu Lin, and Gong-Ru Lin
Opt. Express 23(17) 22676-22690 (2015)

Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode

Yu-Chieh Chi, Yi-Cheng Li, Huai-Yung Wang, Peng-Chun Peng, Hai-Han Lu, and Gong-Ru Lin
Opt. Express 20(18) 20071-20077 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
    [Crossref]
  2. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [Crossref]
  3. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).
  4. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [Crossref]
  5. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [Crossref]
  6. J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
    [Crossref]
  7. H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
    [Crossref]
  8. S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
    [Crossref]
  9. J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
    [Crossref]
  10. S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
    [Crossref]
  11. Z. Al-Qazwini and H. Kim, “Symmetric 10-Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol. 30(12), 1891–1899 (2012).
    [Crossref]
  12. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
    [Crossref]
  13. H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
    [Crossref]
  14. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
    [Crossref]
  15. L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
    [Crossref]
  16. W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
    [Crossref]
  17. G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol. 31(7), 1079–1087 (2013).
    [Crossref]
  18. S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
    [Crossref] [PubMed]
  19. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
    [Crossref]
  20. C.-H. Yeh, C.-W. Chow, Y.-F. Wu, S.-P. Huang, Y.-L. Liu, and C.-L. Pan, “Performance of long-reach passive access networks using injection-locked Fabry–Perot laser diodes with finite front-facet reflectivities,” J. Lightwave Technol. 31(12), 1929–1934 (2013).
    [Crossref]
  21. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi-subcarrier OOFDM up to 15Gbit/s,” J. Lightwave Technol. 31(1), 28–35 (2013).
    [Crossref]
  22. L. J. Cimini., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun. 33(7), 665–675 (1985).
    [Crossref]
  23. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
    [Crossref]
  24. M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
    [Crossref] [PubMed]
  25. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
    [Crossref] [PubMed]
  26. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
    [Crossref]
  27. G. P. Agrawal and M. J. Potasek, “Effect of frequency chirping on the performance of optical communication systems,” Opt. Lett. 11(5), 318–320 (1986).
    [Crossref] [PubMed]
  28. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
    [Crossref]
  29. C. C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36(2), 151–153 (2011).
    [Crossref] [PubMed]
  30. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
    [Crossref]
  31. C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-Can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).
    [Crossref]
  32. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [Crossref] [PubMed]
  33. M.-C. Cheng, C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Direct QAM-OFDM encoding of an L-band master-to-slave injection-locked WRC-FPLD pair for 28 × 20 Gb/s DWDM-PON transmission,” J. Lightwave Technol. 32(17), 2981–2988 (2014).
    [Crossref]
  34. E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
    [Crossref]
  35. S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
    [Crossref] [PubMed]
  36. Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
    [Crossref] [PubMed]
  37. E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
    [Crossref]
  38. N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron. 22(5), 642–650 (1986).
    [Crossref]
  39. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  40. A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
    [Crossref]
  41. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
    [Crossref]
  42. S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
    [Crossref]
  43. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
    [Crossref]

2015 (1)

C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-Can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).
[Crossref]

2014 (2)

2013 (5)

2012 (1)

2011 (3)

2010 (2)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[Crossref]

2009 (4)

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[Crossref]

2008 (5)

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
[Crossref] [PubMed]

S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

2007 (4)

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[Crossref]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
[Crossref]

2006 (1)

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[Crossref]

2005 (1)

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

2004 (1)

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

2003 (2)

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

2002 (1)

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

1993 (2)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

1987 (1)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

1986 (2)

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron. 22(5), 642–650 (1986).
[Crossref]

G. P. Agrawal and M. J. Potasek, “Effect of frequency chirping on the performance of optical communication systems,” Opt. Lett. 11(5), 318–320 (1986).
[Crossref] [PubMed]

1985 (1)

L. J. Cimini., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun. 33(7), 665–675 (1985).
[Crossref]

1983 (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Agrawal, G. P.

Al-Qazwini, Z.

Anderson, T. B.

Arabaci, M.

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Buus, J.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Chan, C. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

Chan, C.-K.

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

Chan, L. Y.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

Chang, G.-K.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Chang-Hasnain, C.

Chen, H.-Y.

Chen, J.

Chen, L. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

Chen, L.-K.

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

Chen, S.-M.

Chen, T.-K.

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Cheng, M.-C.

Cheng, N.

Chi, Y.-C.

Chien, H.-C.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Chow, C.-W.

Chowdhury, A.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Cimini, L. J.

L. J. Cimini., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun. 33(7), 665–675 (1985).
[Crossref]

Cvijetic, N.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Djordjevic, I. B.

Ellinas, G.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Gozu, S.

S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
[Crossref]

Gutierrez, D.

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Han, S. K.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[Crossref]

Harder, C.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Hsu, D.-Z.

Hu, J.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

Huang, M.-F.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Huang, S.-P.

Huang, Y.-H.

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Hung, W.

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

Ishikawa, H.

S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
[Crossref]

Jia, Z.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Jung, D. K.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Kang, J. M.

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[Crossref]

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Kazovsky, L. G.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Kim, C. H.

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

Kim, H.

Z. Al-Qazwini and H. Kim, “Symmetric 10-Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol. 30(12), 1891–1899 (2012).
[Crossref]

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[Crossref]

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Kim, J.-Y.

Kim, M.-H.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[Crossref]

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

Lee, C.-H.

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
[Crossref] [PubMed]

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[Crossref]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

Lee, H.-K.

Lee, J. H.

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

Lee, J. S.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Lee, K.

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

Lee, K. L.

Lee, S. B.

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

Lee, S.-M.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[Crossref]

Li, W.-Y.

Li, Y.-C.

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Lin, G.-C.

S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Lin, G.-R.

C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-Can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).
[Crossref]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

M.-C. Cheng, C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Direct QAM-OFDM encoding of an L-band master-to-slave injection-locked WRC-FPLD pair for 28 × 20 Gb/s DWDM-PON transmission,” J. Lightwave Technol. 32(17), 2981–2988 (2014).
[Crossref]

S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi-subcarrier OOFDM up to 15Gbit/s,” J. Lightwave Technol. 31(1), 28–35 (2013).
[Crossref]

G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol. 31(7), 1079–1087 (2013).
[Crossref]

Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
[Crossref] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Lin, S.-Y.

Lin, Y.-H.

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Liu, Y.-L.

Lu, I.-C.

Minkov, L. L.

Moon, J.-H.

Mozume, T.

S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
[Crossref]

Mun, S.-G.

Murakam, A.

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

Oh, Y. J.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Oh, Y. K.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Osinski, M.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Pan, C.-L.

Parekh, D.

Park, S.-B.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Petermann, K.

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron. 22(5), 642–650 (1986).
[Crossref]

Potasek, M. J.

Qian, D.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

Schunk, N.

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron. 22(5), 642–650 (1986).
[Crossref]

Shaw, W.-T.

Shin, D. J.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Shin, H. S.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Su, Y.-C.

Sung, H. K.

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

Sung, H.-K.

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

Tong, D. T. K.

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

Tong, F.

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

Tsai, C.-T.

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Wang, H.-L.

S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Wang, T.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

Wei, C. C.

Wei, C.-C.

Wong, E.

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Wong, S.-W.

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

Wu, Y.-F.

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Yeh, C.-H.

Yu, J.

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

Yun, I. K.

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

Zhao, X.

Appl. Phys. Lett. (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Electron. Lett. (1)

L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks,” Electron. Lett. 38(1), 43–45 (2002).
[Crossref]

IEEE J. Quantum Electron. (4)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron. 22(5), 642–650 (1986).
[Crossref]

A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-Can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).
[Crossref]

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (9)

W. Hung, C.-K. Chan, L.-K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream re-modulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett. 15(10), 1476–1478 (2003).
[Crossref]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[Crossref]

J. M. Kang and S. K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[Crossref]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[Crossref]

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett. 19(6), 405–407 (2007).
[Crossref]

S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, and Y. J. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19(4), 248–250 (2007).
[Crossref]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[Crossref]

IEEE Sel. Areas Commun. (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE Sel. Areas Commun. 28(6), 781–790 (2010).
[Crossref]

IEEE Trans. Commun. (1)

L. J. Cimini., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun. 33(7), 665–675 (1985).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (1)

G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [invited],” IEEE/OSA J. Opt. Commun. Netw. 1(4), 737–758 (2005).

J. Appl. Phys. (1)

S. Gozu, T. Mozume, and H. Ishikawa, “Refractive index of Si-doped n-InGaAs,” J. Appl. Phys. 104(7), 073507 (2008).
[Crossref]

J. Lightwave Technol. (10)

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[Crossref]

E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
[Crossref]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensitymodulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Z. Al-Qazwini and H. Kim, “Symmetric 10-Gb/s WDM-PON using directly modulated lasers for downlink and RSOAs for uplink,” J. Lightwave Technol. 30(12), 1891–1899 (2012).
[Crossref]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA connected TO-can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi-subcarrier OOFDM up to 15Gbit/s,” J. Lightwave Technol. 31(1), 28–35 (2013).
[Crossref]

G.-R. Lin, Y.-C. Chi, Y.-C. Li, and J. Chen, “Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s,” J. Lightwave Technol. 31(7), 1079–1087 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, Y.-F. Wu, S.-P. Huang, Y.-L. Liu, and C.-L. Pan, “Performance of long-reach passive access networks using injection-locked Fabry–Perot laser diodes with finite front-facet reflectivities,” J. Lightwave Technol. 31(12), 1929–1934 (2013).
[Crossref]

M.-C. Cheng, C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Direct QAM-OFDM encoding of an L-band master-to-slave injection-locked WRC-FPLD pair for 28 × 20 Gb/s DWDM-PON transmission,” J. Lightwave Technol. 32(17), 2981–2988 (2014).
[Crossref]

J. Lightwave Tehcnol. (1)

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Chen, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Tehcnol. 27(14), 2779–2785 (2009).
[Crossref]

Opt. Express (6)

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[Crossref] [PubMed]

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
[Crossref] [PubMed]

D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
[Crossref] [PubMed]

Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
[Crossref] [PubMed]

S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

J. H. Lee, K. Lee, S. B. Lee, and C. H. Kim, “Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs,” Opt. Fiber Technol. 15(3), 310–319 (2009).
[Crossref]

Opt. Lett. (2)

Other (1)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) The optical spectrum of the CLD at free-running and injection-locking conditions; (b) The power-to-current response of the CLD.
Fig. 2
Fig. 2 The test bench of the IL-CLD for 40-Gbit/s 256-QAM OFDM transmission.
Fig. 3
Fig. 3 The pre-leveling operation for the 25-km SMF transmitted OFDM subcarriers.
Fig. 4
Fig. 4 Comparison on the frequency response of the free-running and IL-CLD operated at different bias points.
Fig. 5
Fig. 5 The detuning wavelength dependent (a) RIN and (b) the corresponding BER of the 0-dBm injection-locked slave CLD at different bias conditions.
Fig. 6
Fig. 6 (a) The RIN spectra of the CLD without and with 0-dBm injection at different bias points and (b) the RF spectrum of the IL-CLD carried 256-QAM OFDM data.
Fig. 7
Fig. 7 (a) The received waveform of the IL-CLD carried 256-QAM OFDM data at different bias points and (b) the SNRs of the BtB transmitted 256-QAM OFDM data delivered by the IL-CLD under injection power of 0 dBm and at different bias points.
Fig. 8
Fig. 8 (a) The Ibias dependent power fading response of the IL-CLD and (b) the RF spectrum of the IL-CLD carried 256-QAM OFDM data obtained at different bias points.
Fig. 9
Fig. 9 The declination of RF spectra of the received 256-QAM OFDM data carried by the 0-dBm IL-CLD biased at different currents before and after 25-km SMF transmission.
Fig. 10
Fig. 10 (a) The SNR of the 25-km SMF transmitted 256-QAM OFDM data and (b) the SNR degradation of the BtB and 25-km SMF transmitted 256-QAM OFDM data carried by the IL-CLD at different bias currents.
Fig. 11
Fig. 11 The SNR of the received 256-QAM OFDM data without and with pre-leveling after (a) BtB and (b) 25-km SMF transmission conditions.
Fig. 12
Fig. 12 (a) The constellation plots of the BtB and 25-km SFM transmitted 256-QAM OFDM data, and (b) the BER of the BtB and 25-km SMF transmitted 256-QAM OFDM data delivered by the IL-CLD without and with pre-leveling.

Tables (3)

Tables Icon

Table 1 The Related Parameters for Simulating the Received Throughput Power-to-frequency Response Spectrum of the IL-CLD Carried 256-QAM OFDM Data

Tables Icon

Table 2 The Difference of Throughput Power Loss for the Received 256-QAM OFDM Spectrum

Tables Icon

Table 3 The SNR, BER and EVM of 256-QAM OFDM Data before and after 25-km SMF Transmission

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 0 (t)= η d hν q [ I(t) I th qV Γ v g g' η i τ s 2κ 1+ α 2 S inj S B ]= η d hν q [ I(t) I th ' ],
P n (t)= η d h q ν n [ I DC + i n cos(2πn f subcarrier t+ θ n ) I th ' ],
P received ( f subcarrier )=(1+ α 2 ) cos 2 (2 π 2 β 2 L f subcarrier 2 tan 1 α)×F{ P n (t)}, = P fading × P n ( f subcarrier )
α= 4π λ δμ / δn g' = 4π λ N(t) V g e dμ dn = 4π λ η i I(t) τ s qV g e dμ dn
P received ( f subcarrier )=[ 1+ ( 4π λ η i I(t) τ s qV g e dμ dn ) 2 ] × cos 2 [ 2 π 2 β 2 L f subcarrier 2 tan 1 ( 4π λ η i I(t) τ s qV g e dμ dn ) ] ×F{ η d h v n q [ I DC + i n cos(2πn f subcarrier t+ θ n ) I th ' ] }

Metrics