Abstract

We demonstrate a distributed sensing network with 500 identical ultra-weak fiber Bragg gratings (uwFBGs) in an equal separation of 2m using balanced Michelson interferometer of the phase sensitive optical time domain reflectometry (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3 × 3 coupler demodulation. Lab experiments on detecting sound waves in water tank are carried out. The results show that this system can well demodulate distributed acoustic signal with the pressure detection limit of 0.122Pa and achieve an acoustic phase sensitivity of around −158dB (re rad/μPa) with a relatively flat frequency response between 450Hz to 600Hz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings

Zhihui Luo, Hongqiao Wen, Huiyong Guo, and Minghong Yang
Opt. Express 21(19) 22799-22807 (2013)

Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry

Yiwen Ou, Ciming Zhou, Li Qian, Dian Fan, Chunfu Cheng, and Huiyong Guo
Opt. Express 23(24) 31484-31495 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Wild and S. Hinckley, “Acoustic-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. 8(7), 1184–1193 (2008).
    [Crossref]
  2. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber bragg gratings,” Appl. Opt. 37(34), 8120–8128 (1998).
    [Crossref] [PubMed]
  3. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
    [Crossref] [PubMed]
  4. W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE 3897, 468–479 (1999).
    [Crossref]
  5. C. S. Kim, T. H. Lee, Y. S. Yu, Y. G. Han, S. B. Lee, and M. Y. Jeong, “Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters,” Opt. Express 14(19), 8546–8551 (2006).
    [Crossref] [PubMed]
  6. J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE 6595, 1–8 (2007).
  7. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13(7), 2377–2384 (2005).
    [Crossref] [PubMed]
  8. C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).
  9. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
    [Crossref] [PubMed]
  10. Y. M. Wang, J. M. Gong, D. Y. Wang, T. J. Shilig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
    [Crossref]
  11. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  12. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
    [Crossref] [PubMed]
  13. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  14. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  15. H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, and H. F. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett. 11(3), 030602 (2013).
    [Crossref]
  16. J. C. Juarez and H. F. Taylor, “Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system,” Opt. Lett. 30(24), 3284–3286 (2005).
    [Crossref] [PubMed]
  17. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
  18. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  19. M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
    [Crossref]
  20. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
    [Crossref]

2015 (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

2013 (3)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2008 (1)

G. Wild and S. Hinckley, “Acoustic-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. 8(7), 1184–1193 (2008).
[Crossref]

2007 (2)

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE 6595, 1–8 (2007).

J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

2002 (1)

M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
[Crossref]

2000 (1)

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

1999 (1)

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE 3897, 468–479 (1999).
[Crossref]

1998 (1)

Bao, X.

Bennion, I.

Bucholtz, F.

M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
[Crossref]

Chan, C. C.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Chen, L.

Choi, K. N.

De Natale, P.

Demokan, M. S.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Dong, Y.

Ferraro, P.

Fisher, N. E.

Gagliardi, G.

Gavrilov, L. R.

Gong, J. M.

Guo, H.

Guo, H. Y.

Han, Y. G.

Hand, J. W.

He, Q.

Hinckley, S.

G. Wild and S. Hinckley, “Acoustic-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. 8(7), 1184–1193 (2008).
[Crossref]

Hogari, K.

Imahama, M.

Imamura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Jackson, D. A.

Jeong, M. Y.

Jin, W.

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE 3897, 468–479 (1999).
[Crossref]

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Juarez, J. C.

Kim, C. S.

Koyamada, Y.

Kubota, K.

Lee, S. B.

Lee, T. H.

Li, X. F.

Liu, X.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Lu, Y.

Luo, Z.

Maier, E. W.

Ou, J.

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE 6595, 1–8 (2007).

Pannell, C. N.

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Salza, M.

Seaver, M.

M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
[Crossref]

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Shilig, T. J.

Takahashi, N.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Takahashi, S.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Tang, J. G.

Taylor, H. F.

Todd, M. D.

M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
[Crossref]

Wang, A.

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Wang, D. J.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Wang, D. Y.

Wang, Y. M.

Webb, D. J.

Wen, H.

Wild, G.

G. Wild and S. Hinckley, “Acoustic-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. 8(7), 1184–1193 (2008).
[Crossref]

Xiao, X.

Yang, M.

Yoshimura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Yu, H. F.

Yu, Y. S.

Zhang, L.

Zheng, Y.

Zhou, Z.

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE 6595, 1–8 (2007).

Zhu, T.

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Electron. Lett. (1)

M. D. Todd, M. Seaver, and F. Bucholtz, “Improved, operationally-passive interferometric demodulation method using 3×3 coupler,” Electron. Lett. 38(15), 784–786 (2002).
[Crossref]

IEEE Sens. (1)

G. Wild and S. Hinckley, “Acoustic-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sens. 8(7), 1184–1193 (2008).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

W. Jin, “Multiplexed FBG sensors and their applications,” Proc. SPIE 3897, 468–479 (1999).
[Crossref]

J. Ou and Z. Zhou, “Optic fiber Bragg-grating-based sensing technologies and their applications in structural health monitoring,” Proc. SPIE 6595, 1–8 (2007).

Ultrasonics (1)

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Other (1)

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the balanced φ-OTDR-interferometer system with identical uwFBGs.
Fig. 2
Fig. 2 Michelson interferometer structure diagram based on 3 × 3 coupler.
Fig. 3
Fig. 3 Demodulation system based on 3 × 3 coupler.
Fig. 4
Fig. 4 (a) Experimental setup for φ-OTDR-interferometer with identical uwFBGs, DFB-FL: distributed feedback fiber laser; AOM: acoustic-optic modulator; F: optical fiber grating filter; FRM: Faraday rotation mirror; PD1~3: high-sensitive photodetectors. (b) Schematic diagram of underwater distributed acoustic testing experiment.
Fig. 5
Fig. 5 (a) Demodulated scalogram of the 550Hz acoustic signal with an amplitude of 1V along the total 1km fiber. (b) 3D demodulated phase changing diagram between 250m and 350m [red area in Fig. 5(a)]. (c) Time and frequency responses of our system at 273m and the piezoelectric hydrophone. (d) Time and frequency responses of the demodulation results at 273m, 327m and background.
Fig. 6
Fig. 6 Demodulated amplitude information with different function generating voltages at 550Hz.
Fig. 7
Fig. 7 Time and frequency responses of the demodulated phase changes with 450Hz, 500Hz, 550Hz and 600Hz acoustic signals of 1V at underwater speaker 1.

Tables (1)

Tables Icon

Table 1 Experimental Data of Sensitivity at Different Frequencies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E r (t)= m=1 N e m cos[2πf(t τ m )] rect( t τ m w )
I(t) = E r (t) E r (t) = m=1 N e m 2 rect( t τ m w )+2 m=1 N n=m+1 N e m e n cos ϕ mn rect( t τ m w )rect( t τ n w )
I k =D+ I 0 cos[ϕ(t)(k1)×(2π/3)], k=1,2,3.

Metrics