Abstract

We proposed a resolution enhanced integral imaging display method using two micro-lens arrays (MLA) with different focal lengths for capturing and display respectively. An elemental image array (EIA) is captured with MLA of focal length of f1 and a processed EIA is displayed with MLA of focal length of f2 which is larger than f1. We enlarge the “effective area” in processed EIA to increase the information obtained by viewer, in other words, enhance the viewing resolution. The two micro-lens arrays for capturing and display are g and mg distant from display device respectively, and we can get m2 times resolution enhancement.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

2 November 2015: Corrections were made to the body text and the acknowledgments.


OSA Recommended Articles
Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array

Ki-Chul Kwon, Munkh-Uchral Erdenebat, Young-Tae Lim, Kyung-Il Joo, Min-Kyu Park, Heewon Park, Jong-Rae Jeong, Hak-Rin Kim, and Nam Kim
Opt. Express 25(24) 30503-30512 (2017)

Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system

Ki-Chul Kwon, Ji-Seong Jeong, Munkh-Uchral Erdenebat, Yan-Ling Piao, Kwan-Hee Yoo, and Nam Kim
Biomed. Opt. Express 6(3) 736-746 (2015)

Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array

Do-Hyeong Kim, Munkh-Uchral Erdenebat, Ki-Chul Kwon, Ji-Seong Jeong, Jae-Won Lee, Kyung-Ah Kim, Nam Kim, and Kwan-Hee Yoo
Appl. Opt. 52(34) 8411-8418 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves reversibles. photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  3. Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Research 1(1), 17–27 (2010).
    [Crossref]
  4. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45(8), 1704–1712 (2006).
    [Crossref] [PubMed]
  5. J. S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [Crossref] [PubMed]
  6. Y. Kim, J. Kim, J. M. Kang, J. H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15(26), 18253–18267 (2007).
    [Crossref] [PubMed]
  7. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  8. F. Wu, H. Deng, C. G. Luo, D. H. Li, and Q. H. Wang, “Dual-view integral imaging three-dimensional display,” Appl. Opt. 52(20), 4911–4914 (2013).
    [Crossref] [PubMed]
  9. H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
    [Crossref]
  10. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
    [Crossref] [PubMed]
  11. J. H. Park, S. W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40(29), 5217–5232 (2001).
    [Crossref] [PubMed]
  12. Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44(13), 800–801 (2008).
    [Crossref]

2013 (2)

2010 (3)

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
[Crossref] [PubMed]

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Research 1(1), 17–27 (2010).
[Crossref]

2009 (1)

2008 (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44(13), 800–801 (2008).
[Crossref]

2007 (1)

2006 (1)

2002 (1)

2001 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles. photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

Choi, H.

Deng, H.

Ghanbari, M.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44(13), 800–801 (2008).
[Crossref]

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Research 1(1), 17–27 (2010).
[Crossref]

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[Crossref] [PubMed]

Huynh-Thu, Q.

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44(13), 800–801 (2008).
[Crossref]

Jang, J. S.

Javidi, B.

Jung, J. H.

Jung, S.

Kang, J. M.

Kim, J.

Kim, Y.

Lee, B.

Li, D. H.

Lippmann, G.

G. Lippmann, “Epreuves reversibles. photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Luo, C. G.

Martinez-Corral, M.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Martínez-Corral, M.

Martinez-Cuenca, R.

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Martínez-Cuenca, R.

Min, S. W.

Molina-Martian, A.

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Navarro, H.

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
[Crossref] [PubMed]

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Okano, F.

Okui, M.

Park, J. H.

Saavedra, G.

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
[Crossref] [PubMed]

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Stern, A.

Wang, Q. H.

Wu, F.

Xiao, X.

Yamashita, T.

3D Research (1)

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Research 1(1), 17–27 (2010).
[Crossref]

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G. Lippmann, “Epreuves reversibles. photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Electron. Lett. (1)

Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electron. Lett. 44(13), 800–801 (2008).
[Crossref]

J. Disp. Technol. (1)

H. Navarro, R. Martinez-Cuenca, A. Molina-Martian, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6(10), 404–411 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Structure of a conventional integral-imaging 3D display, (b) Structure of improved integral imaging 3D display.
Fig. 2
Fig. 2 (a) Principle of resolution enhancement in improved integral imaging 3D display, (b) Illustrating the 3D images keep the same in proposed method and conventional method.
Fig. 3
Fig. 3 (a) Unprocessed EIA1, (b) processed EIA2.
Fig. 4
Fig. 4 Different perspectives of computer generated 3D images. (a)Conventional integral imaging display with micro-lens array of f = 3.5 mm, (b) improved integral imaging display with micro-lens array of f = 3.5mm for capturing and micro-lens array of f = 6.5mm for display, (c) conventional integral imaging display with micro-lens array of f = 6.5mm.
Fig. 5
Fig. 5 Experimental setup.
Fig. 6
Fig. 6 Different perspectives of 3D images displayed in the real experiment.(a) Conventional integral imaging display with micro-lens array of f = 3.5mm, (b) improved integral imaging display with micro-lens array of f = 3.5mm for capturing and micro-lens array of f = 6.5mm for display, (c) conventional integral imaging display with micro-lens array of f = 6.5mm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

y = L p g ( N 1 ) p .
[ ( i 1 ) g p L , g p ( m + N 1 ) L ( m 1 ) + ( i 1 ) g p L ] .
[ r o u n d [ ( i 1 ) g n L ] + 1 , r o u n d [ n g ( m + N 1 ) L ( m 1 ) + ( i 1 ) g n L ] ] .
p = p ( m g + L ) L .
m g = L g L N g .
R 1 = g S l .
R 2 = m g S l .
R 2 = m R 1 .
f 2 = m g l m g + l .
m = L L N g .
1 l + 1 g = 1 f .
m = f 2 ( l f 1 ) f 1 ( l f 2 ) .
θ = ± tan 1 ( y 2 L ) = ± tan 1 ( p 2 g ( N 1 ) p 2 L ) .
M S E = 1 m n i = 0 m 1 j = 0 n 1 [ I ( i , j ) K ( i , j ) ] 2 .
P S N R = 10 log 10 ( M A X I 2 M S E ) .

Metrics