Abstract

We propose a compact multi-projection based multi-view 3D display system using an optical light-guide, and perform an analysis of the characteristics of the image for distortion compensation via an optically equivalent model of the light-guide. The projected image traveling through the light-guide experiences multiple total internal reflections at the interface. As a result, the projection distance in the horizontal direction is effectively reduced to the thickness of the light-guide, and the projection part of the multi-projection based multi-view 3D display system is minimized. In addition, we deduce an equivalent model of such a light-guide to simplify the analysis of the image distortion in the light-guide. From the equivalent model, the focus of the image is adjusted, and pre-distorted images for each projection unit are calculated by two-step image rectification in air and the material. The distortion-compensated view images are represented on the exit surface of the light-guide when the light-guide is located in the intended position. Viewing zones are generated by combining the light-guide projection system, a vertical diffuser, and a Fresnel lens. The feasibility of the proposed method is experimentally verified and a ten-view 3D display system with a minimized structure is implemented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal

Chang-Kun Lee, Soon-Gi Park, Seokil Moon, and Byoungho Lee
Opt. Express 24(8) 8458-8470 (2016)

Large-screen multi-view 3D display

Nikolai I. Petrov, Maxim N. Khromov, and Yuri M. Sokolov
OSA Continuum 2(9) 2601-2613 (2019)

Image quality improvement of multi-projection 3D display through tone mapping based optimization

Peng Wang, Xinzhu Sang, Yanhong Zhu, Songlin Xie, Duo Chen, Nan Guo, and Chongxiu Yu
Opt. Express 25(17) 20894-20910 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Wheatstone, “Contributions to the physiology of vision. part the first. On some remarkable and hitherto unobserved phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128(0), 371–394 (1838).
    [Crossref]
  2. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  3. S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
    [Crossref]
  4. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [Crossref] [PubMed]
  5. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  6. J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  7. S.-G. Park, J.-Y. Hong, C.-K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
    [Crossref] [PubMed]
  8. Ricoh Co, Ltd., “Ultra short throw projectors,” http://www.ricoh.com .
  9. A. Travis, F. Payne, J. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in 20th International Display Research Conference of the Society for Information Display (2002) 292–295.
  10. A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
    [Crossref] [PubMed]
  11. M. Large, T. Large, and A. Travis, “Parallel optics in waveguide displays: a flat panel autostereoscopic display,” J. Disp. Technol. 6(10), 431–437 (2010).
    [Crossref]
  12. A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
    [Crossref]
  13. S.-G. Park, C.-K. Lee, and B. Lee, “Compact multi-projection 3D display using a wedge prism,” Proc. SPIE 9391, 939113 (2015).
    [Crossref]
  14. Y. K. Cheng, S. N. Chung, and J. L. Chern, “Aberration analysis of a wedge-plate display system,” J. Opt. Soc. Am. A 24(8), 2357–2362 (2007).
    [Crossref] [PubMed]
  15. C.-K. Lee, T. Lee, H. Sung, and S.-W. Min, “Analysis and design of wedge projection display system based on ray retracing method,” Appl. Opt. 52(17), 3964–3976 (2013).
    [Crossref] [PubMed]
  16. Y. M. Kim, J. Yim, Y.-K. Ahn, and S.-W. Min, “Compensation of elemental image using multiple view vectors for off-axis integral floating system,” Appl. Opt. 53(10), 1975–1982 (2014).
    [Crossref] [PubMed]
  17. K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” in ACM SIGGRAPH 2013 Emerging Technologies (ACM, 2013), paper 1.
  18. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  19. K. Hong, J. Hong, J.-H. Jung, J.-H. Park, and B. Lee, “Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging,” Opt. Express 18(11), 12002–12016 (2010).
    [Crossref] [PubMed]

2015 (1)

S.-G. Park, C.-K. Lee, and B. Lee, “Compact multi-projection 3D display using a wedge prism,” Proc. SPIE 9391, 939113 (2015).
[Crossref]

2014 (3)

2013 (4)

2010 (3)

2009 (2)

2007 (1)

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1838 (1)

C. Wheatstone, “Contributions to the physiology of vision. part the first. On some remarkable and hitherto unobserved phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128(0), 371–394 (1838).
[Crossref]

Ahn, Y.-K.

Bathiche, S.

Bathiche, S. N.

A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
[Crossref]

Chen, N.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Cheng, Y. K.

Chern, J. L.

Choi, S. Y.

Chung, S. N.

Emerton, N.

A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
[Crossref]

A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
[Crossref] [PubMed]

Hong, J.

Hong, J.-Y.

S.-G. Park, J.-Y. Hong, C.-K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
[Crossref] [PubMed]

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Hong, K.

Jeong, Y.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Jung, J.-H.

Kim, C. Y.

Kim, Y.

Kim, Y. M.

Large, M.

M. Large, T. Large, and A. Travis, “Parallel optics in waveguide displays: a flat panel autostereoscopic display,” J. Disp. Technol. 6(10), 431–437 (2010).
[Crossref]

Large, T.

M. Large, T. Large, and A. Travis, “Parallel optics in waveguide displays: a flat panel autostereoscopic display,” J. Disp. Technol. 6(10), 431–437 (2010).
[Crossref]

A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
[Crossref] [PubMed]

Large, T. A.

A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
[Crossref]

Lee, B.

Lee, C.-K.

Lee, J.-H.

Lee, T.

Min, S.-W.

Miranda, M.

Nago, N.

Nam, D.

Park, D.-S.

Park, J.

Park, J.-H.

Park, S.-G.

S.-G. Park, C.-K. Lee, and B. Lee, “Compact multi-projection 3D display using a wedge prism,” Proc. SPIE 9391, 939113 (2015).
[Crossref]

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

S.-G. Park, J.-Y. Hong, C.-K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
[Crossref] [PubMed]

Sung, H.

Takaki, Y.

Travis, A.

M. Large, T. Large, and A. Travis, “Parallel optics in waveguide displays: a flat panel autostereoscopic display,” J. Disp. Technol. 6(10), 431–437 (2010).
[Crossref]

A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
[Crossref] [PubMed]

Travis, A. R. L.

A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
[Crossref]

Wheatstone, C.

C. Wheatstone, “Contributions to the physiology of vision. part the first. On some remarkable and hitherto unobserved phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128(0), 371–394 (1838).
[Crossref]

Yeom, J.

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

Yim, J.

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

J. Disp. Technol. (1)

M. Large, T. Large, and A. Travis, “Parallel optics in waveguide displays: a flat panel autostereoscopic display,” J. Disp. Technol. 6(10), 431–437 (2010).
[Crossref]

J. Inf. Disp. (1)

S.-G. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inf. Disp. 15(1), 37–46 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Philos. Trans. R. Soc. Lond. (1)

C. Wheatstone, “Contributions to the physiology of vision. part the first. On some remarkable and hitherto unobserved phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128(0), 371–394 (1838).
[Crossref]

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. IEEE (1)

A. R. L. Travis, T. A. Large, N. Emerton, and S. N. Bathiche, “Wedge optics in flat panel displays,” Proc. IEEE 101(1), 45–60 (2013).
[Crossref]

Proc. SPIE (1)

S.-G. Park, C.-K. Lee, and B. Lee, “Compact multi-projection 3D display using a wedge prism,” Proc. SPIE 9391, 939113 (2015).
[Crossref]

Other (3)

K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An autostereoscopic projector array optimized for 3D facial display,” in ACM SIGGRAPH 2013 Emerging Technologies (ACM, 2013), paper 1.

Ricoh Co, Ltd., “Ultra short throw projectors,” http://www.ricoh.com .

A. Travis, F. Payne, J. Zhong, and J. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” in 20th International Display Research Conference of the Society for Information Display (2002) 292–295.

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (983 KB)      View images of ten-view 3D display

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of a multi-projection based a multi-view 3D display (top view).
Fig. 2
Fig. 2 Light-guide projection: (a) ray trajectory in wedge-shaped light-guide (side view), (b) multi-view 3D display system using light-guide (top view).
Fig. 3
Fig. 3 Equivalent model of light-guide.
Fig. 4
Fig. 4 Equivalent imaging curve of exit surface.
Fig. 5
Fig. 5 Locus of equivalent imaging points.
Fig. 6
Fig. 6 Image transformation in equivalent models: (a) image transformation of reference image, (b) image transformation of pre-distorted image.
Fig. 7
Fig. 7 Ray-tracing of equivalent model: (a) geometry of light-guide, (b) side view, and (c) top view of projector array.
Fig. 8
Fig. 8 Image estimation results: (a) image at equivalent imaging plane, (b) image at exit surface without total internal reflection, (c) image at exit surface with total internal reflection
Fig. 9
Fig. 9 Active area and common area: (a) overlapped area of active areas, (b) common area.
Fig. 10
Fig. 10 Calibrated checkerboard images for each projector.
Fig. 11
Fig. 11 Overlapped image on the exit surface: (a) before compensation, (b) after compensation.
Fig. 12
Fig. 12 Experimental setup: (a) schematic diagram of ten-view multi-projection 3D display, (b) prototype of ten-view multi-projection 3D display with light-guide.
Fig. 13
Fig. 13 Overlapped checkerboard pattern at the exit surface: (a) original checkerboard pattern, (b) overlapped image before compensation, (c) overlapped image after compensation.
Fig. 14
Fig. 14 View images of ten-view 3D display: (a) 1st view, (b) 2nd view, (c) 3rd view, (d) 4th view, (e) 5th view, (f) 6th view, (g) 7th view, (h) 8th view, (i) 9th view and (j) 10th view (Visualization 1).

Tables (1)

Tables Icon

Table 1 Experimental conditions

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d v = f d p d p f ,
p e = p p d v d p ,
θ view =2 tan 1 ( (n1) p p 2 d p ).
A p =(n1) p p d p .
θ a θ c + θ v ' 2 ,
θ c θ exit = θ i 2N θ e ,
θ apex = θ a 2N θ e .
d h tan( θ v 2 )= d h ' tan( θ v ' 2 ),
d= d o + d h = d o + d h ' cos( θ v /2) n l 2 sin 2 ( θ v /2) ,
d d o + d h ' n l d h ' ( ( n l 2 1) 2 n l 3 ( θ v 2 ) 2 ( n l 4 10 n l 2 +9) 24 n l 5 ( θ v 2 ) 4 +higherorderterms ),
P eq (x,y)=(d,dtan( θ v /2)),
I com = H 2 H 1 H 0 I ref .
I com = H 1 H 0 I pre .
I pre = H 0 1 H 1 1 H 2 H 1 H 0 I ref .

Metrics