Abstract

This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators

Fengnian Xia, Lidija Sekaric, and Yurii A. Vlasov
Opt. Express 14(9) 3872-3886 (2006)

Modeling and measurement of losses in silicon-on-insulator resonators and bends

Shijun Xiao, Maroof H. Khan, Hao Shen, and Minghao Qi
Opt. Express 15(17) 10553-10561 (2007)

60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M.H. Chou, M.A. Arbore, and M.M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21(11), 794–796 (1996).
    [Crossref] [PubMed]
  2. R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
    [Crossref]
  3. P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, A. Delage, D.-X. Xu, S. Janz, A. Densmore, and T.J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
    [Crossref] [PubMed]
  4. A.M. Jones, C.T. DeRose, A.L. Lentine, D.C. Trotter, A.L. Starbuck, and R.A. Norwood, “Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks,” Opt. Express 21(10), 12002–12013 (2013).
    [Crossref] [PubMed]
  5. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
    [Crossref]
  6. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  7. E.A.J. Marcatilli, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
    [Crossref]
  8. M. Tateda, T. Horiguchi, M. Tokuda, and N. Uchida, “Optical loss measurement in graded-index fiber using a dummy fiber,” Appl. Opt. 18(19),3272–3275 (1979).
    [Crossref] [PubMed]
  9. T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6(10), 1244–1247 (1994).
    [Crossref]
  10. H.P. Weber, F.A. Dunn, and W.N. Leibolt, “Loss measurements in thin-film optical waveguides,” Appl. Opt. 12(4), 755–757 (1973).
    [Crossref] [PubMed]
  11. C.-C. Teng, “Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides,” Appl. Opt. 32(7), 1051–1054 (1993).
    [Crossref] [PubMed]
  12. R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
    [Crossref]
  13. B. Little and S.T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21(17), 1390–1392 (1996).
    [Crossref] [PubMed]
  14. M. Borselli, T.J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
    [Crossref] [PubMed]
  15. M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).
  16. B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  17. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [Crossref]
  18. T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.
  19. M. Borselli, “High-Q Microresonators as Lasing Elements for Silicon Photonics,” Dissertation (Ph. D), California Insititute of Technology (2006).
  20. M.R. Watts, W.A. Zortman, D.C. Trotter, R.W. Young, and A.L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
    [Crossref] [PubMed]
  21. Q. Xu, V.R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30(20), 2733–2735 (2005).
    [Crossref] [PubMed]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  23. Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
    [Crossref]
  24. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17, 21350–21361 (2009).
    [Crossref] [PubMed]
  25. H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
    [Crossref]
  26. M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
    [Crossref]
  27. S. Silvey, Statistical Inference (Chapman & Hall, 1975).
  28. M. Avriel, Nonlinear Programming: Analysis and Methods (Dover Publishing, 2003).
  29. R. D’Agostino and M. Stephens, Goodness-of-Fit Techniques (Dekker, 1986).
  30. W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
    [Crossref]
  31. A.M. Jones, “Design, Fabrication, and Characterization of High Density Silicon Photonic Components,” Dissertation (Ph. D), University of Arizona (2014).
  32. D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2007 (2)

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

M. Borselli, T.J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref] [PubMed]

2005 (2)

Q. Xu, V.R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30(20), 2733–2735 (2005).
[Crossref] [PubMed]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

2003 (1)

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
[Crossref]

1997 (1)

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1996 (2)

1994 (2)

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6(10), 1244–1247 (1994).
[Crossref]

R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

1993 (1)

1992 (1)

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

1991 (1)

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

1990 (1)

R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
[Crossref]

1979 (1)

1973 (1)

1969 (1)

E.A.J. Marcatilli, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

Adar, R.

R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Almeida, V.R.

Arbore, M.A.

Armani, D.K.

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Avriel, M.

M. Avriel, Nonlinear Programming: Analysis and Methods (Dover Publishing, 2003).

Baets, R.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

Benson, T.M.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Bock, P.J.

Bogaerts, W.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

Boriskina, S.V.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Borselli, M.

M. Borselli, T.J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref] [PubMed]

M. Borselli, “High-Q Microresonators as Lasing Elements for Silicon Photonics,” Dissertation (Ph. D), California Insititute of Technology (2006).

Chandrasekhar, S.

Chang, T.K.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Cheben, P.

Chou, M.H.

Chrostowski, L.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Chu, S.T.

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

B. Little and S.T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators,” Opt. Lett. 21(17), 1390–1392 (1996).
[Crossref] [PubMed]

D’Agostino, R.

R. D’Agostino and M. Stephens, Goodness-of-Fit Techniques (Dekker, 1986).

Delage, A.

Densmore, A.

DeRose, C.T.

A.M. Jones, C.T. DeRose, A.L. Lentine, D.C. Trotter, A.L. Starbuck, and R.A. Norwood, “Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks,” Opt. Express 21(10), 12002–12013 (2013).
[Crossref] [PubMed]

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Dumon, P.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

Dunn, F.A.

Enami, Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Fejer, M.M.

Feuchter, T.

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6(10), 1244–1247 (1994).
[Crossref]

Foresi, J.

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Gorodetsky, M.L.

M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
[Crossref]

Greedy, S.C.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Greenlee, C.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Hall, T.J.

Haus, H.

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Haus, H.A.

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Horiguchi, T.

Huang, W.

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Ilchenko, V.S.

M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
[Crossref]

Jaeger, N.A.F.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Janz, S.

Jen, A.K.-Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Johnson, T.J.

Jones, A.M.

Kim, T.D.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Kippenberg, T.J.

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Laine, J.-P.

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Lapointe, J.

Leibolt, W.N.

Lentine, A.L.

Levi, A.F.J.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Lin, C.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Lipson, M.

Little, B.

Little, B.E.

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, X.

Logan, R.A.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Loychik, C.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Luck, D.L.

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

Luo, J.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Marcatilli, E.A.J.

E.A.J. Marcatilli, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

Mathine, D.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

McCall, S.L.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Mizrahi, V.

R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Nelson, G.N.

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

Norwood, R.A.

A.M. Jones, C.T. DeRose, A.L. Lentine, D.C. Trotter, A.L. Starbuck, and R.A. Norwood, “Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks,” Opt. Express 21(10), 12002–12013 (2013).
[Crossref] [PubMed]

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Nosich, A.I.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Osgood, R.M.

R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
[Crossref]

Painter, O.

Pearton, S.J.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Peyghambarian, N.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Podlesnik, D. V.

R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
[Crossref]

Pryamikov, A.D.

M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
[Crossref]

Roelkens, G.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

Scarmozzino, R.

R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
[Crossref]

Schmid, J.H.

Serbin, M.R.

R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

Sewell, P.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Shi, W.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Silvey, S.

S. Silvey, Statistical Inference (Chapman & Hall, 1975).

Slusher, R.E.

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Spillane, S.M.

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Starbuck, A.L.

Stephens, M.

R. D’Agostino and M. Stephens, Goodness-of-Fit Techniques (Dekker, 1986).

Tateda, M.

Teng, C.-C.

Thirstrup, C.

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6(10), 1244–1247 (1994).
[Crossref]

Tian, Y.

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Tokuda, M.

Trotter, D.C.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Uchida, N.

Vahala, K.J.

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Van Thourhout, D.

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

Vukovic, A.

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

Wang, Y.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Watts, M.R.

M.R. Watts, W.A. Zortman, D.C. Trotter, R.W. Young, and A.L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
[Crossref] [PubMed]

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

Weber, H.P.

Xu, D.-X.

Xu, Q.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Yong, R.W.

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

Young, R.W.

Yun, H.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Zhang, W.

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Zortman, W.A.

M.R. Watts, W.A. Zortman, D.C. Trotter, R.W. Young, and A.L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
[Crossref] [PubMed]

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[Crossref]

Bell Syst. Tech. J. (1)

E.A.J. Marcatilli, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

Electron. Lett. (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity,” IEEE Photon. Technol. Lett. 6(10), 1244–1247 (1994).
[Crossref]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-Deep UV Lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. Scarmozzino, D. V. Podlesnik, and R.M. Osgood, “Losses of tapered dielectric slab waveguides with axial variations in index of refraction,” IEEE Trans. Microwave Theory Tech. 38(2), 141–147 (1990).
[Crossref]

J. Lightwave Technol. (2)

R. Adar, M.R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994).
[Crossref]

B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

M.L. Gorodetsky, A.D. Pryamikov, and V.S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. A 17(6), 1051–1057 (2000).
[Crossref]

Nature (1)

D.K. Armani, T.J. Kippenberg, S.M. Spillane, and K.J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Nature Photonics (1)

Y. Enami, C.T. Derose, D. Mathine, C. Loychik, C. Greenlee, R.A. Norwood, T.D. Kim, J. Luo, Y. Tian, A.K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photonics 1, 180–185 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Proc. IEEE (1)

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991).
[Crossref]

Proc. SPIE (1)

W. Shi, T.K. Chang, H. Yun, W. Zhang, Y. Wang, C. Lin, N.A.F. Jaeger, and L. Chrostowski, “Differential measurement of transmission losses of integrated optical components using waveguide ring resonators,” Proc. SPIE 8412, 84120R (2012).
[Crossref]

Other (7)

A.M. Jones, “Design, Fabrication, and Characterization of High Density Silicon Photonic Components,” Dissertation (Ph. D), University of Arizona (2014).

S. Silvey, Statistical Inference (Chapman & Hall, 1975).

M. Avriel, Nonlinear Programming: Analysis and Methods (Dover Publishing, 2003).

R. D’Agostino and M. Stephens, Goodness-of-Fit Techniques (Dekker, 1986).

M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nelson, D.L. Luck, and R.W. Yong, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conf. Lasers Electro-Opt, paper CPDB10 (2009).

T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S.C. Greedy, and A.I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology (Springer, 2005), pp. 39–70.

M. Borselli, “High-Q Microresonators as Lasing Elements for Silicon Photonics,” Dissertation (Ph. D), California Insititute of Technology (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Schematic of a racetrack resonator and b) segregation of the RLP by section.
Fig. 2
Fig. 2 Racetrack resonator with example test structures: a) lateral taper, b) vertical transition, c) tap coupler, and d) waveguide crossing.
Fig. 3
Fig. 3 Example transmission functions corresponding to several resonance types. Shown are the experimental data (black lines) and theoretical fits to the transmission functions (red lines) along with the theoretical transmission functions of the separable lower (green line) and higher (blue line) frequency eigenmodes.
Fig. 4
Fig. 4 Schematic of lateral tapers examined and analogous RLP test structures along with their taper functions in terms of the initial waveguide width (w2), final width (w1), and their difference (Δω = w2w1).
Fig. 5
Fig. 5 Schematic of the optical test setup.
Fig. 6
Fig. 6 Transmission loss data from devices with varying straight section lengths (a) and propagation loss estimated from this data (b).
Fig. 7
Fig. 7 Insertion loss of reference RLP structures (Fig. 1(a)).
Fig. 8
Fig. 8 Taper insertion loss data for a) 2.5, b) 5, and c) 10 μm long tapers of varying lateral profile. Shown are the uncalibrated insertion loss estimates (circles) along with fits to this data (solid lines), and calibrated device insertion loss estimates (dashed lines).

Tables (1)

Tables Icon

Table 1 Compiled insertion loss (IL) and confidence interval (CI) data for the twelve tapers analyzed along with the central value ( IL ^ 2 | λ = 1.55 μ m ) and range ( Δ IL ^ 2) of the estimated insertion loss across the 1.50 to 1.60μm wavelength range. Subscripts of the insertion loss estimates IL ^ n correspond to the nth calibration process (Eqs. 15 to 17).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E CW = κ i Δ ω γ α CW / 2
| E out | 2 = | E in + κ E CW | 2
[ E c E s ] = 1 2 [ 1 1 1 1 ] [ E CW E CCW ]
E c , s = κ i ( Δ ω ± γ β / 2 ) γ α c , s / 2
T = | 1 + κ 2 ( E c + E s ) | 2
lim γ β 0 E CW = 1 2 ( E c + E s )
γ α CW = γ ¯ α ( 1 + ( δ α / γ ¯ α ) 2 )
Q CW = ω 0 γ α CW = 2 π n g L λ 0 ln ( α CW )
α CW = exp ( n g L / c γ α CW )
α TOT = ( i = 1 , 2 , 4 α AOL i ) α STB 4 α SUT
α REF = i = 1 4 α AOL i α STB 4
α ^ AOL 3 = ( 1.5 λ + 1.5 )
IL TOT = IL SUT + i = 1 4 IL AOL i + 4 IL STB
err ( IL ^ SUT n ) = ( IL SUT IL ^ SUT n )
err ( IL ^ SUT 0 ) = err ( IL ^ TOT ) + i = 1 4 IL AOL i + 4 IL STB
err ( IL ^ SUT 1 ) = err ( IL ^ TOT ) IL AOL 3 + e r r ( IL ^ REF )
err ( IL ^ SUT 2 ) = err ( IL ^ TOT ) + err ( IL ^ REF ) + err ( IL ^ AOL 3 )

Metrics