Abstract

Rayleigh anomalies (RAs) and surface plasmon polaritons (SPPs) on subwavelength metallic gratings play pivotal roles in many interesting phenomena such as extraordinary optical transmission. In this work, we present a theoretical analysis of the effect of finite metallic grating size on RA-SPP resonances based on the combination of rigorous coupled wave analysis and finite aperture diffraction. One-dimensional arrays of gold subwavelength gratings with different device sizes were fabricated and the optical transmission spectra were measured. As the grating size shrinks, the broadening of the RA-SPP resonances is predicted by the theoretical model. For the first order RA-SPP resonances, the results from this model are in good agreement with the spectra measured from the fabricated plasmonic gratings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons

Jeffrey M. McMahon, Joel Henzie, Teri W. Odom, George C. Schatz, and Stephen K. Gray
Opt. Express 15(26) 18119-18129 (2007)

Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom
Opt. Express 17(4) 2334-2340 (2009)

Surface sensitivity of Rayleigh anomalies in metallic nanogratings

Silvio Savoia, Armando Ricciardi, Alessio Crescitelli, Carmine Granata, Emanuela Esposito, Vincenzo Galdi, and Andrea Cusano
Opt. Express 21(20) 23531-23542 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [Crossref]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  4. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  5. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. De Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28(2), 253–264 (2011).
    [Crossref]
  6. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
    [Crossref]
  7. A. T. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance,” Opt. Lett. 37(10), 1742–1744 (2012).
    [Crossref] [PubMed]
  8. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
    [Crossref] [PubMed]
  9. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  10. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 269–275 (1902).
  11. L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
    [Crossref]
  12. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31(3), 213–222 (1941).
    [Crossref]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  14. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
    [Crossref]
  15. D. M. Natarov, V. O. Byelobrov, R. Sauleau, T. M. Benson, and A. I. Nosich, “Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires,” Opt. Express 19(22), 22176–22190 (2011).
    [Crossref] [PubMed]
  16. N. P. Stognii and N. K. Sakhnenko, “Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602207 (2013).
    [Crossref]
  17. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18(8), 1912–1928 (2001).
    [Crossref] [PubMed]
  18. R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39(21), 3649–3653 (2000).
    [Crossref] [PubMed]
  19. J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
    [Crossref]
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  21. H. R. Raether, Surface Plasmons on Smooth Surfaces and Rough Surfaces (Springer, 1988).
  22. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [Crossref]
  23. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
    [Crossref] [PubMed]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Edition (Wiley, 2007)

2013 (1)

N. P. Stognii and N. K. Sakhnenko, “Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602207 (2013).
[Crossref]

2012 (1)

2011 (3)

2009 (1)

2007 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

2001 (2)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A 18(8), 1912–1928 (2001).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1995 (1)

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[Crossref]

1981 (1)

1941 (1)

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

1907 (1)

L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 269–275 (1902).

Aguirre, C. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Alù, A.

Bendickson, J. M.

Benson, T. M.

Bloemer, M. J.

Boye, R. R.

Brundrett, D. L.

Byelobrov, V. O.

Chang, S.-H.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

D’Aguanno, G.

De Ceglia, D.

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fano, U.

Gao, H.

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Glytsis, E. N.

Gray, S.

Gray, S. K.

Halas, N. J.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Henzie, J.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Kostuk, R. K.

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Lee, A.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Lee, M. H.

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Majewski, P.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Mattiucci, N.

McMahon, J. M.

Moharam, M. G.

Moran, C. E.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Natarov, D. M.

Noponen, E.

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[Crossref]

Nosich, A. I.

Odom, T. W.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Rahman, A. T.

Rayleigh, L.

L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

Saarinen, J.

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[Crossref]

Sakhnenko, N. K.

N. P. Stognii and N. K. Sakhnenko, “Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602207 (2013).
[Crossref]

Sauleau, R.

Schatz, G.

Schatz, G. C.

Steele, J. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Stognii, N. P.

N. P. Stognii and N. K. Sakhnenko, “Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602207 (2013).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Turunen, J. P.

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[Crossref]

Vasilev, K.

Vincenti, M. A.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 269–275 (1902).

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

N. P. Stognii and N. K. Sakhnenko, “Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4602207 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Eng. (1)

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34(9), 2560–2566 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Philos. Mag. (2)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 269–275 (1902).

L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14(79), 60–65 (1907).
[Crossref]

Phys. Rev. (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

Phys. Rev. B (1)

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Phys. Rev. Lett. (3)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26(1), 014043 (2011).
[Crossref]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Edition (Wiley, 2007)

H. R. Raether, Surface Plasmons on Smooth Surfaces and Rough Surfaces (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of the finite Au grating on a glass substrate (b) cross-sectional view of the structure with geometric parameters.
Fig. 2
Fig. 2 (a) RCWA simulation of total transmitted power with different angular incidences. Summary of the simulated results for grating sizes D from 15 μm to 150 μm are shown in the plots of (b) first order RA-SPP at Au/glass interface (c) first order RA-SPP at Au/air interface (d) second order RA-SPP at Au/glass interface.
Fig. 3
Fig. 3 (a) SEM image shows the fabricated grating with smooth slits; and (b) Transmission measurement setup
Fig. 4
Fig. 4 Measured spectra showing the transmission within (a) first order Au/glass within 1250-1700 nm. (b) first order Au/air within 1000-1250 nm and (c) second order Au/glass within 750-1000 nm (d) Summary of the simulated and experiment results of transitional edges vs. device size.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k SPP = k 0 sinα±iG=Re| ω c ε Au ε d ε Au + ε d |,
k RA = k 0 sinα±iG=Re| ω c ε d |.
E(x)= g gr (x) f ap (x)U(x),
E(θ) F[ g gr (x) f ap (x)U(x) ] | f x = x λz = θ λ ,
E(θ) F[ g gr (x) f ap (x) ] | f x = θα λ = G gr ( θα λ ξ ) F ap (ξ)dξ ,
I(θ) | G gr ( θα λ ξ )sinc(Dξ)dξ | 2 .
I(θ) | G 0 (α) | 2 sin c 2 [ D( θα λ ) ].

Metrics