Abstract

Conventional optical tweezers suffer from several complications when applying axial forces to surface-tethered molecules. Aberrations from the refractive-index mismatch between an oil-immersion objective’s medium and the aqueous trapping environment both shift the trap centre and degrade the trapping strength with focal depth. Furthermore, interference effects from back-scattered light make it difficult to use back-focal-plane interferometry for high-bandwidth position detection. Holographic optical tweezers were employed to correct for aberrations to achieve a constant axial stiffness and modulate artifacts from backscattered light. Once the aberrations are corrected for, the trap height can be precisely determined from either the back-scattered light or Brenner’s formula.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward optical-tweezers-based force microscopy for airborne microparticles

Rory M. Power, Daniel R. Burnham, and Jonathan P. Reid
Appl. Opt. 53(36) 8522-8534 (2014)

Optical trap stiffness in the presence and absence of spherical aberrations

Karen C. Vermeulen, Gijs J. L. Wuite, Ger J. M. Stienen, and Christoph F. Schmidt
Appl. Opt. 45(8) 1812-1819 (2006)

Optical trapping of coated microspheres

Volker Bormuth, Anita Jannasch, Marcel Ander, Carlos M. van Kats, Alfons van Blaaderen, Jonathon Howard, and Erik Schäffer
Opt. Express 16(18) 13831-13844 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
    [Crossref] [PubMed]
  2. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref] [PubMed]
  3. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
    [Crossref] [PubMed]
  4. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
    [Crossref] [PubMed]
  5. M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J. 105, 1293–1303 (2013).
    [Crossref] [PubMed]
  6. J.-C. Meiners, “Femtonewton force spectroscopy of single extended dna molecules,” Phys. Rev. Lett. 84, 5014–5017 (2000).
    [Crossref] [PubMed]
  7. S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
    [Crossref] [PubMed]
  8. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
    [Crossref]
  9. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  10. M. Dienerowitz, G. Gibson, R. Bowman, and M. Padgett, “Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample,” Opt. Express 19, 24589–24595 (2011).
    [Crossref] [PubMed]
  11. G. C. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical tweezers,” in Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Elsevier Press, 2008), pp. 139–168
    [Crossref]
  12. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
    [Crossref]
  13. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]
  14. E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
    [Crossref]
  15. K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, “Measurement of the effective focal shift in an optical trap,” Opt. Lett. 30, 1318–1320 (2005).
    [Crossref] [PubMed]
  16. A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
    [Crossref] [PubMed]
  17. P. Török, P. Varga, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12, 2660 (1995).
    [Crossref]
  18. A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
    [Crossref] [PubMed]
  19. C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
    [Crossref] [PubMed]
  20. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
    [Crossref]

2015 (1)

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
[Crossref] [PubMed]

2013 (2)

M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J. 105, 1293–1303 (2013).
[Crossref] [PubMed]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

2012 (1)

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

2008 (2)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[Crossref] [PubMed]

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

2007 (1)

E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
[Crossref]

2006 (1)

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

2005 (1)

2004 (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

2000 (1)

J.-C. Meiners, “Femtonewton force spectroscopy of single extended dna molecules,” Phys. Rev. Lett. 84, 5014–5017 (2000).
[Crossref] [PubMed]

1999 (1)

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

1998 (1)

1995 (2)

1986 (1)

Abbondanzieri, E. A.

Allemand, J.

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Anselmetti, D.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Ashkin, A.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, “Measurement of the effective focal shift in an optical trap,” Opt. Lett. 30, 1318–1320 (2005).
[Crossref] [PubMed]

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Bouchiat, C.

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Bowman, R.

Capitanio, M.

M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J. 105, 1293–1303 (2013).
[Crossref] [PubMed]

Chu, S.

Cizmar, T.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Courtial, J.

G. C. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical tweezers,” in Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Elsevier Press, 2008), pp. 139–168
[Crossref]

Croquette, V.

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Dholakia, K.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Dienerowitz, M.

Dziedzic, J. M.

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Gibson, G.

Gittes, F.

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Hachmann, W.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Howard, J.

E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
[Crossref]

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Kleimann, C.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Leonardo, R. D.

G. C. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical tweezers,” in Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Elsevier Press, 2008), pp. 139–168
[Crossref]

Mack, A. H.

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Marko, J. F.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Meiners, J.-C.

J.-C. Meiners, “Femtonewton force spectroscopy of single extended dna molecules,” Phys. Rev. Lett. 84, 5014–5017 (2000).
[Crossref] [PubMed]

Milstein, J. N.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
[Crossref] [PubMed]

Mochrie, S. G. J.

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[Crossref] [PubMed]

Németh, G.

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[Crossref] [PubMed]

K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, “Measurement of the effective focal shift in an optical trap,” Opt. Lett. 30, 1318–1320 (2005).
[Crossref] [PubMed]

Nørrelykke, S. F.

E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
[Crossref]

Padgett, M.

Pavone, F. S.

M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J. 105, 1293–1303 (2013).
[Crossref] [PubMed]

Pollari, R.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
[Crossref] [PubMed]

Regan, L.

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

Schäfer, M. M.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Schäffet, E.

E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
[Crossref]

Schlingman, D. J.

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

Schmidt, C. F.

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[Crossref]

Seuffert, I.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Siggia, E. D.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Sischka, A.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Spalding, G. C.

G. C. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical tweezers,” in Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Elsevier Press, 2008), pp. 139–168
[Crossref]

Stienen, G. J. M.

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

Strick, T.

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Tönsing, K.

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Török, P.

Varga, P.

Vermeulen, K. C.

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Wang, M. D.

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

Wuite, G. J. L.

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

Yehoshua, S.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
[Crossref] [PubMed]

Appl. Optics (1)

K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Optics 45, 1812–1819 (2006).
[Crossref]

Biophys. J. (3)

M. Capitanio and F. S. Pavone, “Interrogating biology with force: single molecule high-resolution measurements with optical tweezers,” Biophys. J. 105, 1293–1303 (2013).
[Crossref] [PubMed]

C. Bouchiat, M. D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette, “Estimating the persistence length of a worm-like chain molecule from force-extension measurements,” Biophys. J. 76, 409–413 (1999).
[Crossref] [PubMed]

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial optical traps : a new direction for optical tweezers,” Biophys. J. 108, 2759–2766 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Langmuir (1)

E. Schäffet, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654–3665 (2007).
[Crossref]

Macromolecules (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[Crossref]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[Crossref] [PubMed]

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J.-C. Meiners, “Femtonewton force spectroscopy of single extended dna molecules,” Phys. Rev. Lett. 84, 5014–5017 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

A. H. Mack, D. J. Schlingman, L. Regan, and S. G. J. Mochrie, “Practical axial optical trapping,” Rev. Sci. Instrum. 83, 103106 (2012).
[Crossref] [PubMed]

A. Sischka, C. Kleimann, W. Hachmann, M. M. Schäfer, I. Seuffert, K. Tönsing, and D. Anselmetti, “Single beam optical tweezers setup with backscattered light detection for three-dimensional measurements on DNA and nanopores,” Rev. Sci. Instrum. 79, 063702 (2008).
[Crossref] [PubMed]

Other (1)

G. C. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical tweezers,” in Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Elsevier Press, 2008), pp. 139–168
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the optical setup.

Fig. 2
Fig. 2

Back-scattered light produces oscillations in the total scattered intensity. Fitting with Eq. (7) (solid line) allows the trap height h to be determined with respect to the coverslip surface. The coverslip surface is found from the abrupt change in the intensity signal as it starts to resemble that of a bead stuck to the surface (dashed line).

Fig. 3
Fig. 3

Axial stiffness with (red circles) and without (blue squares) spherical aberration correction. Initially, the axial stiffness decreases with height; however, after correcting for aberrations, the trap strength remains constant. Solid and dashed lines are linear fits to the data.

Fig. 4
Fig. 4

Bead-coverslip separation, (hR), as a function of z. Modulations to the detected signal from backscattered light are clearly seen in the standard deviation of the signal intensity σI. The addition of a quadratic term to the effective focal shift improves the accuracy of the fit (blue dashed line), but for separations below ∼ 2.5μm there is negligible difference from a linear shift (red solid line).

Fig. 5
Fig. 5

(a) Measured drag assuming a constant trap stiffness: before (grey) and after (black) correcting for aberrations. With a constant stiffness, Eq. (5) fits the data well (solid black line). (b) Bead-coverslip separation, (hR), determined from oscillations in intensity (solid red), and the normalized drag before (dashed gray) and after (dashed black) correcting for aberrations to maintain a constant trap stiffness.

Fig. 6
Fig. 6

Modulation of the standard deviation of the signal intensity σI by beam blocks of variable radius. Experimental data plotted with fits for radii of 0% (open circles, solid line), 20% (squares, dashed line), 30% (crosses, dotted line), and 40% (diamonds, dash-dot) of the the objective entrance pupil radius.

Fig. 7
Fig. 7

(a) Scattered intensity vs. focal depth for a tethered (blue/filled circles) and free bead (red/open circles). The red/solid line is a fit to the free bead data and the vertical line indicates the surface. (b) Force extension curve for 5kb λ-DNA showing a fit to the WLC. The persistence length ξp was found to be 42 nm in our buffer.

Tables (1)

Tables Icon

Table 1 Zernicke polynomials of different orders and their effects on the laser focus.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Φ ( x , y ) = 2 π λ ( ( x x + y y ) f + ( x 2 + y 2 ) z f 2 ) ,
| P ( f ) | 2 = D V 2 π ( f 2 + f c 2 ) ,
κ = 2 π f c γ ,
β = k B T γ D V ,
γ = γ 0 1 9 R 8 h + R 3 2 h 3 57 R 4 100 h 4 + R 5 5 h 5 + 7 R 11 200 h 11 R 12 25 h 12 ,
k = 4 π n / λ .
I ( z ) = A exp ( B z ) sin ( k L 1 z + ζ ) + P ( z ) ,
Φ SA ( ρ ) z n = 0 A n , 0 Z n , 0 ( ρ ) , for even n ,
Φ cor ( ρ ) = A z ( 6 ρ 4 6 ρ 2 + 1 ) ,
L = h ( z ) β ( z ) ( I 0 ( z ) I ( z ) ) R ,
F = κ β ( z ) ( I 0 ( z ) I ( z ) ) ,
F ( x ; ξ p ) = k B T ξ p ( 1 4 ( 1 x / L c ) 2 1 4 + x L c ) ,

Metrics