Abstract

We numerically and experimentally investigate the pulse evolution to the edge of destabilization against pumping powers in a strongly dissipative-dispersive laser configuration mode locked by nonlinear polarization evolution (NPE) technique. Two distinct dynamic processes are indicated by numerical results and further evidenced by experimental observations, where one depicts the monotonous increase in peak power and slight narrowing of duration, the other is different in exhibiting obvious broadening in temporal domain. Correspondingly, it is demonstrated in the simulation of cavity dynamics that the artificial saturable absorber plays two opposite roles in pulse shaping, which implies the switch of cavity feedback. Mechanisms with respect to different cavity feedbacks are analyzed based on a newly-proposed theoretical viewpoint, for positive feedback single pulse operation is restricted by the limit of peak power mainly dependent of the gain bandwidth; for negative feedback the breakup is attributed to the limited strength of clamping effect determined by multiple ingredients.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feedback-controlled Raman dissipative solitons in a fiber laser

Denis S. Kharenko, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, and Sergey A. Babin
Opt. Express 23(2) 1857-1862 (2015)

Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition

Lan Liu, Jun-Hong Liao, Qiu-Yi Ning, Wei Yu, Ai-Ping Luo, Shan-Hui Xu, Zhi-Chao Luo, Zhong-Min Yang, and Wen-Cheng Xu
Opt. Express 21(22) 27087-27092 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  2. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  3. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  4. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  5. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [Crossref]
  6. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137–23146 (2009).
    [Crossref] [PubMed]
  7. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
    [Crossref] [PubMed]
  8. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  9. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
    [Crossref] [PubMed]
  10. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
    [Crossref] [PubMed]
  11. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
    [Crossref]
  12. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32(11), 1581–1583 (2007).
    [Crossref] [PubMed]
  13. F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [Crossref]
  14. P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  15. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
    [Crossref]
  16. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  17. X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
    [Crossref] [PubMed]
  18. H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
    [Crossref]
  19. M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
    [Crossref]
  20. E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26(12), 2290–2300 (2009).
    [Crossref]
  21. Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
    [Crossref] [PubMed]
  22. E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
    [Crossref] [PubMed]
  23. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  24. V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4), 046606 (2009).
    [Crossref] [PubMed]
  25. G. M. Donovan, “Dynamics and statistics of noise-like pulses in modelocked lasers,” Physica D 309, 1–8 (2015).
    [Crossref]
  26. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
    [Crossref] [PubMed]
  27. A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
    [Crossref]
  28. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
    [Crossref]
  29. H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
    [Crossref]
  30. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
    [Crossref]
  31. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
    [Crossref]
  32. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  33. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. Lett. 82(8), 467–471 (2005).
    [Crossref]
  34. V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18(25), 25757–25770 (2010).
    [Crossref] [PubMed]
  35. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
    [Crossref] [PubMed]
  36. H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron., doi:.
    [Crossref]
  37. W. Lin, S. Wang, S. Xu, Z. C. Luo, and Z. Yang, “Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance,” Opt. Express 23(11), 14860–14875 (2015).
    [Crossref] [PubMed]
  38. J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
    [Crossref]
  39. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic–quintic Ginzburg–Landau equation,” J. Opt. Soc. Am. B 28(10), 2314–2319 (2011).
    [Crossref]
  40. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
    [Crossref]

2015 (4)

2014 (2)

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

2013 (1)

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

2012 (2)

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (4)

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18(25), 25757–25770 (2010).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (6)

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
[Crossref] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

2007 (3)

2005 (3)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. Lett. 82(8), 467–471 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

2004 (1)

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

2002 (1)

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

2000 (2)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

1998 (1)

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

1997 (2)

M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Abdelalim, M.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron., doi:.
[Crossref]

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Akhmediev, N.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Akhmediev, N. N.

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Amrani, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Anis, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron., doi:.
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Apolonski, A.

Aus der Au, J.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Babin, S. A.

Bale, B. G.

Barad, Y.

Broderick, N. G. R.

Brunel, M.

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Chartier, T.

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Cheng, T. H.

Cheng, Z.

Chong, A.

Ding, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26(12), 2290–2300 (2009).
[Crossref]

Dmitriev, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Donovan, G. M.

G. M. Donovan, “Dynamics and statistics of noise-like pulses in modelocked lasers,” Physica D 309, 1–8 (2015).
[Crossref]

Erkintalo, M.

Fedoruk, M. P.

Fu, X. Q.

Ge, Y. Q.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

Grelu, P.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Guo, C.

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

Haboucha, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Hideur, A.

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Horowitz, M.

Kalashnikov, V. L.

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18(25), 25757–25770 (2010).
[Crossref] [PubMed]

V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4), 046606 (2009).
[Crossref] [PubMed]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. Lett. 82(8), 467–471 (2005).
[Crossref]

Kärtner, F. X.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Keller, U.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

Kharenko, D. S.

Kieu, K.

Komarov, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Komarov, K.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Kotb, H.

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron., doi:.
[Crossref]

Kutz, J. N.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Leblond, H.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Lecaplain, C.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Li, H.

Li, X.

Lin, A.

Lin, H.

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

Lin, W.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, X.

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[Crossref]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[Crossref] [PubMed]

Lu, C.

Lu, K.

Luo, J. L.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

Luo, Z. C.

Martel, G.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Matsas, V.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Podivilov, E.

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. Lett. 82(8), 467–471 (2005).
[Crossref]

Podivilov, E. V.

Renninger, W. H.

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Ruan, S.

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

Runge, A. F. J.

Salhi, M.

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Sanchez, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

Sandstede, B.

Shen, D. Y.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

Shlizerman, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

Shtyrina, O. V.

Silberberg, Y.

Soto-Crespo, J. M.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Sun, H.

Tam, H. Y.

Tang, D. Y.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32(11), 1581–1583 (2007).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Wang, L.

Wang, P.

Wang, S.

Wang, Y.

Wen, S. C.

Wise, F.

Wise, F. W.

Wu, J.

Xu, S.

Yang, J.

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

Yang, Z.

Yarutkina, I. A.

Zhang, S. M.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L. M.

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32(11), 1581–1583 (2007).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, W.

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively mode-locked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

F. X. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[Crossref]

IEEE Photonics J. (1)

J. L. Luo, Y. Q. Ge, D. Y. Tang, S. M. Zhang, D. Y. Shen, and L. M. Zhao, “Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber Lasers,” IEEE Photonics J. 6(1), 1500608 (2014).
[Crossref]

J. Exp. Theor. Phys. Lett. (1)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. Lett. 82(8), 467–471 (2005).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Salhi, H. Leblond, F. Sanchez, M. Brunel, and A. Hideur, “Stability calculations for the ytterbium-doped fibre laser passively mode-locked through nonlinear polarization rotation,” J. Opt. A, Pure Appl. Opt. 6(8), 774–780 (2004).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

Laser Phys. Lett. (1)

H. Lin, C. Guo, S. Ruan, and J. Yang, “Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output,” Laser Phys. Lett. 11(8), 085102 (2014).
[Crossref]

Nat. Photonics (1)

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (7)

J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16(2), 636–650 (2008).
[Crossref] [PubMed]

X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
[Crossref] [PubMed]

Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
[Crossref] [PubMed]

W. Lin, S. Wang, S. Xu, Z. C. Luo, and Z. Yang, “Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance,” Opt. Express 23(11), 14860–14875 (2015).
[Crossref] [PubMed]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18(25), 25757–25770 (2010).
[Crossref] [PubMed]

B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137–23146 (2009).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (8)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Phys. Rev. A 65(6), 063811 (2002).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber laser,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4), 046606 (2009).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Phys. Rev. Lett. (2)

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Physica D (1)

G. M. Donovan, “Dynamics and statistics of noise-like pulses in modelocked lasers,” Physica D 309, 1–8 (2015).
[Crossref]

Other (1)

H. Kotb, M. Abdelalim, and H. Anis, “Generalized analytical model for dissipative soliton in all normal dispersion mode locked fiber laser,” IEEE J. Sel. Top. Quantum Electron., doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup of mode-locked fiber laser and the corresponding interpretation in the numerical calculation. (b) Nonlinear loss curves represented by Eqs. (1)a), (1b) and the relevant kurtosis parameters. T 1(I) varies with α3 for α1 = π/10 and α2 = π/10 + π/2, while T 2(I) varies with β 3 for α1 = π/10, α2 = π/10 + π/2, α3 = 1.5, β 1 = π/10 and β 2 = π/10 + π/2. The horizontal line in (b) illustrates the level of parabolic shape, in this case the distributed master equation equals to the CQGLE.
Fig. 2
Fig. 2 Top: simulated evolution processes of pulse profiles and spectra for decreasing value of parameter φ 2; bottom: simulated evolution processes of pulse profiles and spectra for increasing value of parameter ξ 1. Other parameters representing the state of APSs are shown in the figure.
Fig. 3
Fig. 3 (a),(b) Simulated autocorrelation traces and spectra varying with the gain saturation energy for type I. (c),(d) Simulated autocorrelation traces and spectra varying with the gain saturation energy for type II. The insets of (a) and (c) show the pulse duration in dependence on the gain saturation energy for type I and type II, respectively. The gray lines describe the pulses right after destabilization.
Fig. 4
Fig. 4 Intra-cavity pulse evolution in the pulse duration for (a) type I and (b) type II. Variations within the red result from the contribution of APS1.
Fig. 5
Fig. 5 (a),(b) Experimental autocorrelation traces and spectra varying with the pump power for type I. (c),(d) Experimental autocorrelation traces and spectra varying with the pump power for type II. (e) Experimental autocorrelation trace after pulse splitting for type II. The insets of (a) and (c) show the pulse duration in dependence on the pump power for type I and type II, respectively. The gray lines in (b) and (d) describe the spectra right after destabilization for type I and type II, respectively.
Fig. 6
Fig. 6 (a) Schematic showing dependence of the limiting intensity together with reference intensity on the increasing pump power in the positive and negative feedback regime. (b) Master diagram illustrated as contour plot of the values of R 2 from zero (blue) to high (red), the positions 1, 2, 3, 4 in a typical master curve is corresponding to R 2 = 0.24, 0.34, 0.59, 0.65, respectively. The inset in (b) demonstrates the relevant spectra (lines in color) comparing with the experimental spectra (gray lines).
Fig. 7
Fig. 7 (a),(b) Experimental autocorrelation traces together with the autocorrelation traces calculated from hyperbolic-secant profiles for type I at the forward pump power P f = 28.7 and 50.4 mW, respectively. (c),(d) Experimental autocorrelation traces together with the autocorrelation traces calculated from the hyperbolic-secant, Gaussian, super-Gaussian profiles for type II at the forward pump power P f = 88 and 243 mW, respectively. The inset of (c) shows the asymmetric structure of the simulated pulse.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T 1 ( I ) = Re { log [ cos α 2 ( cos α 1 cos ( 2 γ J 1 / 3 ) e i k L + sin α 1 sin ( 2 γ J 1 / 3 ) e i α 3 ) + sin α 2 ( cos α 1 sin ( 2 γ J 1 / 3 ) + sin α 1 cos ( 2 γ J 1 / 3 ) e i k L i α 3 ) ] / L } T 2 ( I ) = Re ( log { ( cos β 1 cos α 1 + sin β 1 sin α 1 e i α 3 ) [ ( cos α 2 cos ( 2 γ J 2 / 3 ) e i k L sin α 2 sin ( 2 γ J 2 / 3 ) ) × cos ( β 1 + β 2 ) + ( cos α 2 sin ( 2 γ J 2 / 3 ) e i β 3 + sin α 2 cos ( 2 γ J 2 / 3 ) e i ( k L β 3 ) ) sin ( β 1 + β 2 ) ] } / L ) where J 1 = cos α 1 sin α 1 sin α 3 I L J 2 = 0.5 sin ( 2 β 1 + 2 β 2 ) sin β 3 ( cos 2 α 1 cos 2 β 1 + sin 2 α 1 sin 2 β 1 + 0.5 sin 2 α 1 sin 2 β 1 cos α 3 ) I L
ψ i z = i k ψ i + δ ψ i t i β 2 2 ψ i t 2 + i γ ( | ψ i | 2 + 2 3 | ψ j | 2 ) ψ i + i γ 3 ψ i 2 ψ j * + g ψ i + g Ω 2 2 ψ i t 2 ψ j z = i k ψ j δ ψ j t i β 2 2 ψ j t 2 + i γ ( | ψ j | 2 + 2 3 | ψ i | 2 ) ψ j + i γ 3 ψ j 2 ψ i * + g ψ j + g Ω 2 2 ψ j t 2
J A n a l y z e r = ( cos θ sin θ sin θ cos θ ) , J i = ( cos φ i sin φ i sin φ i e i ξ i cos φ i e i ξ i ) , J P = ( 1 0 0 0 ) ( i = 1 , 2 )
i ψ z β 2 ψ t t + γ | ψ | 2 ψ = i σ ψ + i ε | ψ | 2 ψ + i α ψ t t + i μ | ψ | 4 ψ ν | ψ | 4 ψ
I ( t ) = 2 d 0 d 2 + d 2 2 4 d 0 d 4 cos h ( 2 d 0 t ) where d 0 = σ α d 2 β d α , d 2 = 2 ε 4 α + 3 β d 2 α d 2 , d 4 = μ 3 α + 2 β d α d 2
I ( t ) = I l 1 + Δ / I l 2 1 + Δ / I l 2 cos h ( 2 d 0 t )
I ( w ) = 6 π γ H ( Δ f 2 w 2 ) μ ( w 2 + Δ f 2 R 2 ) where Δ f 2 = 3 I s γ β [ ( 1 α γ β ε ) ± ( 1 α γ β ε ) 2 2 σ ε I s ] R 2 = 4 ( 1 + 2 α γ / β ε ) 3 [ ( 1 α γ / β ε ) ± ( 1 α γ / β ε ) 2 ( 2 σ / ε I s ) ] 5 3
y = β Ω 2 I s γ x + a 0 ε I s

Metrics