Abstract

A novel hyperspectral imaging system has been developed that takes advantage of the tunable path delay between orthogonal polarization states of a liquid crystal variable retarder. The liquid crystal is placed in the optical path of an imaging system and the path delay between the polarization states is varied, causing an interferogram to be generated simultaneously at each pixel. A data set consisting of a series of images is recorded while varying the path delay; Fourier transforming the data set with respect to the path delay yields the hyperspectral data-cube. The concept is demonstrated with a prototype imager consisting of a liquid crystal variable retarder integrated into a commercial 640x480 pixel CMOS camera. The prototype can acquire a full hyperspectral data-cube in 0.4 s, and is sensitive to light over a 400 nm to 1100 nm range with a dispersion-dependent spectral resolution of 450 cm−1 to 660 cm−1. Similar to Fourier transform spectroscopy, the imager is spatially and spectrally multiplexed and therefore achieves high optical throughput. Additionally, the common-path nature of the polarization interferometer yields a vibration-insensitive device. Our concept allows for the spectral resolution, imaging speed, and spatial resolution to be traded off in software to optimally address a given application. The simplicity, compactness, potential low cost, and software adaptability of the device may enable a disruptive class of hyperspectral imaging systems with a broad range of applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution hyperspectral imaging with cascaded liquid crystal cells

Aurélie Jullien, Rémy Pascal, Umberto Bortolozzo, Nicolas Forget, and Stefania Residori
Optica 4(4) 400-405 (2017)

Infrared hyperspectral imaging polarimeter using birefringent prisms

Julia Craven-Jones, Michael W. Kudenov, Maryn G. Stapelbroek, and Eustace L. Dereniak
Appl. Opt. 50(8) 1170-1185 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.
  2. F. Kruse, “Advances in hyperspectral remote sensing for geologic mapping and exploration,” in Proceedings 9th Australasian Remote Sensing Conference, Sydney, Australia (1998).
  3. W. Hua, X. Liu, and J. Yang, “On combining spectral and spatial information of hyperspectral image for camouflaged target detecting,” in International Conference on Optical Instruments and Technology (OIT2013), X. Lin and J. Zheng, eds. (International Society for Optics and Photonics, 2013), p. 90451A.
    [Crossref]
  4. D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).
  5. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  6. M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
    [Crossref]
  7. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  8. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  9. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci.(Paris) 197, 1593 (1933).
  10. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965).
    [Crossref]
  11. S. K. Shriyan, “Tunable electro-optic thin film stack for hyperspectral imaging,” PhD Thesis, Drexel University (2011).
  12. S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
    [Crossref]
  13. A. Raz and D. Mendlovic, “Sequential filtering for color image acquisition,” Opt. Express 22(22), 26878–26883 (2014).
    [Crossref] [PubMed]
  14. M. Golub, N. Menachem, A. Amir, A. Kagan, V. Zheludev, and R. Malinsky, “Snapshot spectral imaging based on digital cameras,” U.S. patent US 20130194481 A1 (2013).
  15. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
    [Crossref] [PubMed]
  16. M. A. Golub, M. Nathan, A. Averbuch, E. Lavi, V. A. Zheludev, and A. Schclar, “Spectral multiplexing method for digital snapshot spectral imaging,” Appl. Opt. 48(8), 1520–1526 (2009).
    [Crossref] [PubMed]
  17. K. Itoh, T. Inoue, T. Ohta, and Y. Ichioka, “Liquid-crystal imaging Fourier-spectrometer array,” Opt. Lett. 15(11), 652 (1990).
    [Crossref] [PubMed]
  18. Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
    [Crossref]
  19. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010).
  20. P. J. Bos and K. R. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113, 329–339 (1984).
  21. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
    [Crossref]
  22. H. Wang, “Studies of liquid crystal response time,” PhD Thesis, University of Central Florida (2005).
  23. C. D. Porter and D. B. Tanner, “Correction of phase errors in Fourier spectroscopy,” Int. J. Infrared Millim. Waves 4(2), 273–298 (1983).
    [Crossref]
  24. W. Amos, “Imaging system and method for Fourier transform spectroscopy,” U.S. patent 6,519,040 (1997).
  25. J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).
  26. T. H. Chao, “Electro-optic imaging Fourier transform spectrometer,” in IEEE Aerospace Conference Proceedings (IEEE, 2007) pp. 1–6.
  27. A. Harvey and D. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
    [Crossref] [PubMed]
  28. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref] [PubMed]
  29. Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt. Lett. 38(23), 4996–4999 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt. Lett. 38(23), 4996–4999 (2013).
[Crossref] [PubMed]

2012 (2)

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref] [PubMed]

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

2005 (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

2004 (1)

2003 (1)

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1991 (1)

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

1990 (1)

1984 (1)

P. J. Bos and K. R. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113, 329–339 (1984).

1983 (1)

C. D. Porter and D. B. Tanner, “Correction of phase errors in Fourier spectroscopy,” Int. J. Infrared Millim. Waves 4(2), 273–298 (1983).
[Crossref]

1976 (1)

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

1965 (1)

1933 (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci.(Paris) 197, 1593 (1933).

August, Y.

Averbuch, A.

Avni, R.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Ben-Dor, E.

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.

Bos, P. J.

P. J. Bos and K. R. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113, 329–339 (1984).

Brady, D. J.

Chao, T. H.

T. H. Chao, “Electro-optic imaging Fourier transform spectrometer,” in IEEE Aerospace Conference Proceedings (IEEE, 2007) pp. 1–6.

Chester, T. L.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Dereniak, E. L.

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Fitzgerald, J. J.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Fletcher-Holmes, D.

Fontecchio, A. K.

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

Gehm, M. E.

Golub, M. A.

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Hart, L. P.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Harvey, A.

Ichioka, Y.

Inoue, T.

Itoh, K.

Itoh, Y.

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

John, R.

Johnson, D. J.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Koehler, K. R.

P. J. Bos and K. R. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113, 329–339 (1984).

Kruse, F.

F. Kruse, “Advances in hyperspectral remote sensing for geologic mapping and exploration,” in Proceedings 9th Australasian Remote Sensing Conference, Sydney, Australia (1998).

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref] [PubMed]

Lavi, E.

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

Lyot, B.

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci.(Paris) 197, 1593 (1933).

Malthus, T.

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.

Manolakis, D.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).

Marden, D.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).

Masuda, Y.

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

Mendlovic, D.

Nathan, M.

Ohta, T.

Palacios-Orueta, A.

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Plankey, F. W.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Plaza, A.

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.

Porter, C. D.

C. D. Porter and D. B. Tanner, “Correction of phase errors in Fourier spectroscopy,” Int. J. Infrared Millim. Waves 4(2), 273–298 (1983).
[Crossref]

Raz, A.

Schclar, A.

Schläpfer, D.

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.

Schulz, T. J.

Schundler, E.

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

Schwarze, C.

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

Seki, H.

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

Shaw, G. A.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).

Shriyan, S. K.

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

Šolc, I.

Stern, A.

Tanner, D. B.

C. D. Porter and D. B. Tanner, “Correction of phase errors in Fourier spectroscopy,” Int. J. Infrared Millim. Waves 4(2), 273–298 (1983).
[Crossref]

Uchida, T.

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

Ustin, S. L.

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Vanderbilt, V. C.

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

Whiting, M. L.

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Willett, R. M.

Winefordner, J. D.

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

Zarco-Tejada, P.

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Zheludev, V. A.

Appl. Opt. (1)

C. R. Acad. Sci.(Paris) (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci.(Paris) 197, 1593 (1933).

Int. J. Infrared Millim. Waves (1)

C. D. Porter and D. B. Tanner, “Correction of phase errors in Fourier spectroscopy,” Int. J. Infrared Millim. Waves 4(2), 273–298 (1983).
[Crossref]

J. Appl. Remote Sens. (1)

S. K. Shriyan, E. Schundler, C. Schwarze, and A. K. Fontecchio, “Electro-optic polymer liquid crystal thin films for hyperspectral imaging,” J. Appl. Remote Sens. 6(1), 063549 (2012).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

J. Displ. Technol. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Displ. Technol. 1(1), 51–61 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “Double-layer electrically controlled birefringence liquid-crystal display with a wide-viewing-angle cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

Linc. Lab. J. (1)

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Linc. Lab. J. 14, 79–116 (2003).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. J. Bos and K. R. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113, 329–339 (1984).

Opt. Eng. (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

M. L. Whiting, S. L. Ustin, P. Zarco-Tejada, A. Palacios-Orueta, and V. C. Vanderbilt, “Hyperspectral mapping of crop and soils for precision agriculture,” Proc. SPIE 6298, 62980B (2006).
[Crossref]

Spectrochim. Acta Part B At. Spectrosc. (1)

J. D. Winefordner, R. Avni, T. L. Chester, J. J. Fitzgerald, L. P. Hart, D. J. Johnson, and F. W. Plankey, “A comparison of signal-to-noise ratios for single channel methods (sequential and multiplex) vs multichannel methods in optical spectroscopy,” Spectrochim. Acta Part B At. Spectrosc. 31, 1–19 (1976).

Other (9)

T. H. Chao, “Electro-optic imaging Fourier transform spectrometer,” in IEEE Aerospace Conference Proceedings (IEEE, 2007) pp. 1–6.

H. Wang, “Studies of liquid crystal response time,” PhD Thesis, University of Central Florida (2005).

W. Amos, “Imaging system and method for Fourier transform spectroscopy,” U.S. patent 6,519,040 (1997).

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schläpfer, “Hyperspectral remote sensing,” in Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), pp. 419–465.

F. Kruse, “Advances in hyperspectral remote sensing for geologic mapping and exploration,” in Proceedings 9th Australasian Remote Sensing Conference, Sydney, Australia (1998).

W. Hua, X. Liu, and J. Yang, “On combining spectral and spatial information of hyperspectral image for camouflaged target detecting,” in International Conference on Optical Instruments and Technology (OIT2013), X. Lin and J. Zheng, eds. (International Society for Optics and Photonics, 2013), p. 90451A.
[Crossref]

S. K. Shriyan, “Tunable electro-optic thin film stack for hyperspectral imaging,” PhD Thesis, Drexel University (2011).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010).

M. Golub, N. Menachem, A. Amir, A. Kagan, V. Zheludev, and R. Malinsky, “Snapshot spectral imaging based on digital cameras,” U.S. patent US 20130194481 A1 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Liquid crystal spectral encoder (a) is placed inside camera body, shown schematically in (b); corresponding photo of system (c).

Fig. 2
Fig. 2

Hypothetical single-nematic structure (a) and utilized double-nematic structure (b), with LC director angle θ and angle of incidence ψ. Alignment layers are shaded blue with alignment direction indicated by arrow. Relative angular dependence of the optical path delay for the two configurations with worst-case LC director orientation of 45° (c); blue: single cell, green: double cell. Enlarged y-scale plot of the angular dependence for the double-nematic structure showing the second-order dependence (d).The optical path delay vs. angle shown in (c) and (d) is an approximation calculated from Eqs. (2) and (3), with Δz = [ne(ψ + 45°) − no]d for (c) and Δz = [ne(ψ + 45°)/2 + ne(ψ − 45°)/2 − no]d —plus sign for the top half of the cell and minus sign for the bottom half—for (d). The full calculation for retardance of a birefringent network at arbitrary angles of incidence is given in [19].

Fig. 3
Fig. 3

RGB image of hyperspectral imager test scene consisting of three diffuse laser spots at different wavelengths and the 850 nm phase reference.

Fig. 4
Fig. 4

Upper plot: spectra obtained from spatially integrating hyperspectral data-cube within regions indicated in Fig. 3. Lower plots: interferograms obtained from spatially integrating the raw interferogram data-cube over the same regions used for the upper plot.

Fig. 5
Fig. 5

Hyperspectral test subject consisting of two kinds of flowers and a leaf. RGB image of subject (a). Slices of hyperspectral data-cube obtained with prototype imager at indicated wavelengths (b), (c), and (d).

Fig. 6
Fig. 6

Resolution vs. wavelength of the prototype imager, shown in wavenumbers (upper plot) and nanometers (lower plot) at a temperature of 35 degrees Celsius. The independently-sampled spectral bands are indicated by alternating bars of lighter and darker color.

Tables (1)

Tables Icon

Table 1 Results of four-laser experiment

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

γ dθ dt =( ε || ε ) E 2 sinθcosθ+( k 3 k 1 )sinθcosθ ( θ z ) 2 +( k 1 cos 2 θ+ k 3 sin 2 θ ) 2 θ z 2 .
Δz( x,y )= 0 d(x,y) [ n e ( θ ) n o ]dz ,
1 n e 2 ( θ ) = cos 2 θ n e 2 + sin 2 θ n o 2 .
t decay = γ k 1 ( d π ) 2
S= ( 1 T T C ) β ,
I 0 = 0 S( σ )dσ .
J 0 = 1 2 ( 1 1 ).
J= 1 2 ( 1 e iΓ ).
J = J 0 J 0 * J= e iΓ /2 cos Γ 2 J 0 .
S ( σ )= S( σ ) 2 J * J = S( σ ) 4 ( 1+cos( 2πσΔz ) ),
I( Δz )= I 0 4 + 1 4 0 S( σ )cos( 2πσΔz )dσ .
| σ 1 σ 2 |Δ z max 1.
d eff = Δ z max ( λ,T ) Δn( λ,T ) = N( λ,T )λ Δn( λ,T ) .
Δ z max ( λ,T )= d eff Δn( λ,T ).
Δσ= 1 d eff Δn( λ,T ) ,
Δλ= λ 2 d eff Δn( λ,T ) .

Metrics