Abstract

Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz–½ and is characterized at wavelengths from 780 nm to 500 µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber
Opt. Express 21(15) 17941-17950 (2013)

Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors

Stefan Regensburger, Martin Mittendorff, Stephan Winnerl, Hong Lu, Arthur C. Gossard, and Sascha Preu
Opt. Express 23(16) 20732-20742 (2015)

Terahertz photoresponse of black phosphorus

Edward Leong, Ryan J. Suess, Andrei B. Sushkov, H. Dennis Drew, Thomas E. Murphy, and Martin Mittendorff
Opt. Express 25(11) 12666-12674 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
    [Crossref]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  3. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
    [Crossref] [PubMed]
  4. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  5. S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett. 19(14), 554–555 (1983).
    [Crossref]
  6. Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
    [Crossref]
  7. M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
    [Crossref]
  8. S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).
  9. S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber, “Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals,” Opt. Express 21(15), 17941–17950 (2013).
    [Crossref] [PubMed]
  10. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
    [Crossref]
  11. F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
    [Crossref]
  12. R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
    [Crossref] [PubMed]
  13. J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
    [Crossref] [PubMed]
  14. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  15. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  16. C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
    [Crossref]
  17. Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
    [Crossref] [PubMed]
  18. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
    [Crossref] [PubMed]
  19. A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
    [Crossref] [PubMed]
  20. X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
    [Crossref] [PubMed]
  21. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
    [Crossref] [PubMed]
  22. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
    [Crossref] [PubMed]
  23. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  24. M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
    [Crossref]
  25. W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
    [Crossref]
  26. S. D. Ganichev, “Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields,” Physica B 273, 737–742 (1999).
    [Crossref]
  27. E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
    [Crossref]
  28. W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
    [Crossref]
  29. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
    [Crossref]
  30. M. M. Glazov and S. D. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535(3), 101–138 (2014).
    [Crossref]
  31. Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
    [Crossref] [PubMed]
  32. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  33. Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
    [Crossref] [PubMed]
  34. G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
    [Crossref] [PubMed]
  35. S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
    [Crossref] [PubMed]
  36. Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
    [Crossref]
  37. S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
    [Crossref]
  38. C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
    [Crossref] [PubMed]

2015 (3)

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

2014 (8)

M. M. Glazov and S. D. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535(3), 101–138 (2014).
[Crossref]

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

2013 (5)

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber, “Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals,” Opt. Express 21(15), 17941–17950 (2013).
[Crossref] [PubMed]

2012 (4)

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
[Crossref] [PubMed]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

2011 (1)

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

2010 (5)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

2008 (1)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

2007 (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

2004 (1)

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

2001 (1)

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

2000 (1)

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

1999 (1)

S. D. Ganichev, “Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields,” Physica B 273, 737–742 (1999).
[Crossref]

1997 (1)

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

1994 (1)

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

1991 (1)

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

1985 (1)

S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).

1983 (1)

S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett. 19(14), 554–555 (1983).
[Crossref]

1959 (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Alden, J. S.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

Andersson, M. A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Bauer, M.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Berger, C.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Bichler, M.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Birnbacher, U.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Bloom, D. M.

S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett. 19(14), 554–555 (1983).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bonn, M.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Bowers, J. E.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Capasso, F.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chen, J.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Chen, Y.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
[Crossref] [PubMed]

Cojocari, O.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Coquillat, D.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Crawford, D. L.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

de Heer, W. A.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Deshmukh, M. M.

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Du, X.

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Dubey, S.

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

Eroms, J.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Feng, X.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Gabor, N. M.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

Ganichev, S. D.

M. M. Glazov and S. D. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535(3), 101–138 (2014).
[Crossref]

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

S. D. Ganichev, “Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields,” Physica B 273, 737–742 (1999).
[Crossref]

S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).

Gao, T.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Gebhart, M.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Gershenzon, E. M.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Giboney, K.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Glazov, M. M.

M. M. Glazov and S. D. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535(3), 101–138 (2014).
[Crossref]

Gol’tsman, G. N.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Gossard, A. C.

Göttfert, F.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Gousev, Yu. P.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Grover, S.

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

Hafich, M. J.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Hakala, T.

Han, Q.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Hartmann, R. R.

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Heinz, T. F.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Helm, M.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Heusinger, M. A.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Hübers, H.-W.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Ignatov, A. A.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Ivanov, I.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jarillo-Herrero, P.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Jensen, S. A.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Jnawali, G.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

Jozwikowska, A.

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

Jozwikowski, K.

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Kaasalainen, S.

Kamann, J.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Karasik, B. S.

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Klappenberger, F.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Klushin, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Knap, W.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Knorr, A.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Kogler, W.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Kono, J.

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Kopytko, M.

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

Lambrecht, W. R. L.

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

Leitgeb, E.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Levitov, L. S.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Li, J.

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Limpijumnong, S.

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

Lisauskas, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Liu, G.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Liu, Z.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Lu, H.

Ma, Q.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Malic, E.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Mathew, J. P.

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

Matukas, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

McEuen, P. L.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

McKitterick, C. B.

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Mics, Z.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Mittendorff, M.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber, “Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals,” Opt. Express 21(15), 17941–17950 (2013).
[Crossref] [PubMed]

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Müllen, K.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Müller, A.-S.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nair, N. L.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Nebosis, F. L. S.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Niu, L.

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Orlita, M.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Parvez, K.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Perel, V. I.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Portnoi, M. E.

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Potemski, M.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Prettl, W.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

Preu, S.

Prober, D. E.

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Rao, Y.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

Rashkeev, S. N.

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

Rauter, P.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Renk, K. F.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Robinson, G. Y.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Rodwell, M. J.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Rogalski, A.

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

Roskos, H. G.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Schneider, H.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Schomburg, E.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Schrotter, P.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Segall, B.

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

Semenov, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Semenov, A. D.

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Silvestre, P.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Song, F.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Song, J. C. W.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Sprinkle, M.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Stake, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Suomalainen, J.

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Taniguchi, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Taychatanapat, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Terent’ev, Y. V.

S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Tielrooij, K.-J.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Tredicucci, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Turchinovich, D.

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

van der Zande, A. M.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Vora, H.

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Wang, S. Y.

S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett. 19(14), 554–555 (1983).
[Crossref]

Watanabe, K.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Weber, H. B.

Wegscheider, W.

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Weiss, D.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

Wey, Y. G.

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Winnerl, S.

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

S. Preu, M. Mittendorff, S. Winnerl, H. Lu, A. C. Gossard, and H. B. Weber, “Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals,” Opt. Express 21(15), 17941–17950 (2013).
[Crossref] [PubMed]

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

Winzer, T.

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Wu, X.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xu, X.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

Yan, F.

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

Yan, H.

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Yaroshetskii, I. D.

S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).

Yassievich, I. N.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

Yu, D.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Zak, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

Zhang, R.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Zhang, Y.

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Zheng, Z.

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

Ziemann, E.

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

Adv. Mater. (1)

J. Li, L. Niu, Z. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26(31), 5239–5273 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett. 78(12), 1673 (2001).
[Crossref]

M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, “Ultrafast graphene-based broadband THz detector,” Appl. Phys. Lett. 103(2), 021113 (2013).
[Crossref]

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

S. Grover, S. Dubey, J. P. Mathew, and M. M. Deshmukh, “Limits on the bolometric response of graphene due to flicker noise,” Appl. Phys. Lett. 106(5), 051113 (2015).
[Crossref]

Y. G. Wey, D. L. Crawford, K. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson, “Ultrafast graded double‐heterostructure GaInAs/InP photodiode,” Appl. Phys. Lett. 58(19), 2156 (1991).
[Crossref]

Electron. Lett. (1)

S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett. 19(14), 554–555 (1983).
[Crossref]

IEEE Electron Device Lett. (1)

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

J. Appl. Phys. (2)

E. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, “Characterization of deep impurities in semiconductors by terahertz tunneling ionization,” J. Appl. Phys. 87(8), 3843 (2000).
[Crossref]

Yu. P. Gousev, G. N. Gol’tsman, A. D. Semenov, E. M. Gershenzon, F. L. S. Nebosis, M. A. Heusinger, and K. F. Renk, “Broadband ultrafast superconducting NbN detector for electromagnetic radiation,” J. Appl. Phys. 75(7), 3695 (1994).
[Crossref]

J. Low Temp. Phys. (1)

C. B. McKitterick, H. Vora, X. Du, B. S. Karasik, and D. E. Prober, “Graphene microbolometers with superconducting contacts for terahertz photon detection,” J. Low Temp. Phys. 176(3-4), 291–298 (2014).
[Crossref]

J. Phys.: Condens. Matter (2)

C. B. McKitterick, D. E. Prober, H. Vora, and X. Du, “Ultrasensitive graphene far-infrared power detectors,” J. Phys.: Condens. Matter 27(16), 164203 (2015).
[Crossref] [PubMed]

S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer, “Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior,” J. Phys.: Condens. Matter 25(5), 054202 (2013).
[Crossref] [PubMed]

Nano Lett. (4)

G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Lett. 13(2), 524–530 (2013).
[Crossref] [PubMed]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene,” Nano Lett. 14(10), 5834–5838 (2014).
[Crossref] [PubMed]

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10(2), 562–566 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

R. R. Hartmann, J. Kono, and M. E. Portnoi, “Terahertz science and technology of carbon nanomaterials,” Nanotechnology 25(32), 322001 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Mics, K.-J. Tielrooij, K. Parvez, S. A. Jensen, I. Ivanov, X. Feng, K. Müllen, M. Bonn, and D. Turchinovich, “Thermodynamic picture of ultrafast charge transport in graphene,” Nat. Commun. 6, 7655 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9(10), 814–819 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opto-Electron. Rev. (1)

M. Kopytko, K. Jozwikowski, A. Jozwikowska, and A. Rogalski, “High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes,” Opto-Electron. Rev. 18(3), 277–283 (2010).
[Crossref]

Phys. Rep. (1)

M. M. Glazov and S. D. Ganichev, “High frequency electric field induced nonlinear effects in graphene,” Phys. Rep. 535(3), 101–138 (2014).
[Crossref]

Phys. Rev. (1)

W. G. Spitzer, D. Kleinman, and D. Walsh, “Electronic infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959).
[Crossref]

Phys. Status Solidi B (1)

W. R. L. Lambrecht, S. Limpijumnong, S. N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment,” Phys. Status Solidi B 202(1), 5–33 (1997).
[Crossref]

Physica B (1)

S. D. Ganichev, “Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields,” Physica B 273, 737–742 (1999).
[Crossref]

Proc. SPIE (1)

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Han, T. Gao, R. Zhang, Y. Chen, J. Chen, G. Liu, Y. Zhang, Z. Liu, X. Wu, and D. Yu, “Highly sensitive hot electron bolometer based on disordered graphene,” Sci. Rep. 3, 3533 (2013).
[Crossref] [PubMed]

Science (1)

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648–652 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Sov. Tech. Phys. Lett. (1)

S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, “Photon-drag photodetectors for the far-IR and submillimeter regions,” Sov. Tech. Phys. Lett. 11, 20 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Mounted detector in a copper holder contacted with conductive epoxy, the dark part in the center is the antenna. (b) Optical micrograph of the inner part of the antenna. The partly visible grid in the background allowed the precise positioning of the antenna.

Fig. 2
Fig. 2

Fast response of the detectors at different wavelengths: (a) 780 nm, (b) 10.8 µm, (c) 76 µm, (d) 496 µm. Parts (a), (b), and (c) are recorded with sampling oscilloscopes, (d) is the average of 17 measurements recorded with a standard oscilloscope.

Fig. 3
Fig. 3

Oscilloscope traces recorded at a wavelength of 9.2 µm and a pulse energy of 4.8 nJ with different bias voltages. The peak values of the traces as a function of the applied bias voltage in combination with a linear fit are shown in the inset.

Fig. 4
Fig. 4

Oscilloscope traces caused by two subsequent laser pulses at 780 nm (left pulse) and 1560 nm (right pulse) and pulse energies of 32 pJ and 126 pJ, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP= n × U noise U peak × E pulse t signal × 1 BW

Metrics