Abstract

We report an all-fiber linearly-polarized (LP) supercontinuum (SC) source with high average power generated in a polarization-maintaining (PM) master-oscillation power-amplifier (MOPA). The experimental configuration comprises an LP picosecond pulsed laser and three PM Yd-doped fiber amplifiers (YDFA). The output has the average power of 124.8 W with the spectrum covering from 850 to 1900 nm. The measured polarization extinction ratio (PER) of the whole SC source is about 85% which verifies the SC an LP source. This work is, to our best knowledge, the highest output average power of an LP SC source that ever reported. The influence of PM fiber splicing method on the LP SC property is investigated by splicing the PM fibers with slow axis parallel or perpendicularly aligned, and also an LP SC with low output power is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hundred-watt level linearly polarized visible supercontinuum generation

Yue Tao, Sheng-Ping Chen, and He Xu
Opt. Express 27(18) 26044-26049 (2019)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

High power narrow-linewidth linearly-polarized 1610 nm Er:Yb all-fiber MOPA

Eisuke Fujita, Yutaka Mashiko, Seira Asaya, Mitsuru Musha, and Masaki Tokurakawa
Opt. Express 24(23) 26255-26260 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).
  3. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
    [Crossref]
  4. F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technol. Lett. 13(1), 73–75 (2001).
    [Crossref]
  5. Ö. Boyraz and M. N. Islam, “A multiwavelength CW source based on longitudinal mode-carving of supercontinuum generated in fibers and noise performance,” J. Lightwave Technol. 20(8), 1493–1499 (2002).
    [Crossref]
  6. L. O. Herrmann and J. J. Baumberg, “Watching single nanoparticles grow in real time through supercontinuum spectroscopy,” Small 9(22), 3743–3747 (2013).
    [Crossref] [PubMed]
  7. I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc. 66(8), 944–950 (2012).
    [Crossref] [PubMed]
  8. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  9. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  10. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
    [Crossref]
  11. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  12. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber aser source at 1 µm,” Opt. Lett. 30(10), 1171–1173 (2005).
    [Crossref] [PubMed]
  13. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  14. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation,” Opt. Express 16(4), 2438–2445 (2008).
    [Crossref] [PubMed]
  15. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21(2), 249–257 (2004).
    [Crossref]
  16. V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
    [Crossref] [PubMed]
  17. J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
    [Crossref]
  18. N. Gupta, “Development of Agile Wide Spectral Range Hyperspectral/Polarization Imagers,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper PThA3.
  19. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
    [Crossref]
  20. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
    [Crossref] [PubMed]
  21. G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
    [Crossref]
  22. P. Yan, J. Shu, S. Ruan, J. Zhao, J. Zhao, C. Du, C. Guo, H. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19(6), 4985–4990 (2011).
    [Crossref] [PubMed]
  23. H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
    [Crossref]
  24. C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).
  25. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
    [Crossref] [PubMed]
  26. R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
    [Crossref]

2014 (2)

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

2013 (4)

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
[Crossref] [PubMed]

L. O. Herrmann and J. J. Baumberg, “Watching single nanoparticles grow in real time through supercontinuum spectroscopy,” Small 9(22), 3743–3747 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

P. Yan, J. Shu, S. Ruan, J. Zhao, J. Zhao, C. Du, C. Guo, H. Wei, and J. Luo, “Polarization dependent visible supercontinuum generation in the nanoweb fiber,” Opt. Express 19(6), 4985–4990 (2011).
[Crossref] [PubMed]

2008 (1)

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

2002 (2)

2001 (2)

F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technol. Lett. 13(1), 73–75 (2001).
[Crossref]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

1999 (1)

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Absi, A.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
[Crossref] [PubMed]

Alexander, V. V.

Angelis, C. D.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Bargigia, I.

Bassi, A.

Baumberg, J. J.

L. O. Herrmann and J. J. Baumberg, “Watching single nanoparticles grow in real time through supercontinuum spectroscopy,” Small 9(22), 3743–3747 (2013).
[Crossref] [PubMed]

Boer, G. J.

Boppart, S. A.

Boyraz, Ö.

Brown, T.

Brown, T. G.

Chen, H.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Chen, S.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Chen, S. P.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Chen, Z.

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber aser source at 1 µm,” Opt. Lett. 30(10), 1171–1173 (2005).
[Crossref] [PubMed]

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Cubeddu, R.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Drexler, W.

Du, C.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Farina, A.

Freeman, M. J.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
[Crossref] [PubMed]

Frera, A. D.

Fujimoto, J. G.

Futami, F.

F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technol. Lett. 13(1), 73–75 (2001).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Ghanta, R. K.

Guo, C.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hartl, I.

Herrmann, L. O.

L. O. Herrmann and J. J. Baumberg, “Watching single nanoparticles grow in real time through supercontinuum spectroscopy,” Small 9(22), 3743–3747 (2013).
[Crossref] [PubMed]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hongwei, C.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Hou, J.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Huang, Y. C.

Huifeng, W.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Ifaraguerri, A. I.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

Ifarraguerri, A.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ippen, E. P.

Islam, M. N.

Jiang, Y.

Kaivola, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Kalinchenko, G.

Kärtner, F. X.

Ke, K.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
[Crossref] [PubMed]

Kikuchi, K.

F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technol. Lett. 13(1), 73–75 (2001).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Ko, T. H.

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Leonard, J.

Li, J.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Li, X. D.

Lim, H.

Liu, T.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Lu, Q.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Lu, Q. S.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Luo, J.

Manili, G.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Meola, J.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, and G. J. Boer, “Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser,” Appl. Opt. 52(27), 6813–6823 (2013).
[Crossref] [PubMed]

Minoni, U.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Modotto, D.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Mora, A. D.

Morgner, U.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

Peiguang, Y.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Peterson, L. M.

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

Pifferi, A.

Pitris, C.

Ranka, J. K.

Ruan, S.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Shehata, A. B.

Shi, Z.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Shu, J.

Song, R.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Szalkowski, A. S.

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Taroni, P.

Tonello, A.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Tong, L.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Tosi, A.

Town, G.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Wabnitz, S.

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Wadsworth, W. J.

Wang, Y.

Wei, H.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Windeler, R. S.

Wise, F. W.

Xiong, C.

Xuanfeng, Z.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

Yan, P.

Yang, W.

Yang, W. Q.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Zadnik, J. A.

Zappa, F.

Zhao, J.

Zhu, Z.

Zilun, C.

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Chen, Z. Chen, S. Chen, J. Hou, and Q. Lu, “Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber,” Appl. Phys. Express 6(3), 032702 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[Crossref]

Appl. Spectrosc. (1)

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from ingle supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Hongwei, W. Huifeng, L. Tong, Z. Xuanfeng, Y. Peiguang, C. Zilun, S. Chen, J. Li, J. Hou, and Q. Lu, “All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 1–8 (2014).

IEEE Photonics Technol. Lett. (1)

F. Futami and K. Kikuchi, “Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber,” IEEE Photonics Technol. Lett. 13(1), 73–75 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. S. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Fiber Technol. (1)

G. Manili, D. Modotto, U. Minoni, S. Wabnitz, C. D. Angelis, G. Town, A. Tonello, and V. Couderc, “Modal four-wave mixing supported generation of supercontinuum light from the infrared to the visible region in a birefringent multi-core microstructured optical fiber,” Opt. Fiber Technol. 17(3), 160–167 (2011).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (1)

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” Proc. SPIE 9088, 90881A (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Small (1)

L. O. Herrmann and J. J. Baumberg, “Watching single nanoparticles grow in real time through supercontinuum spectroscopy,” Small 9(22), 3743–3747 (2013).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2013).

N. Gupta, “Development of Agile Wide Spectral Range Hyperspectral/Polarization Imagers,” in Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper PThA3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the whole experimental setup. LP: linearly polarized; PM: polarization maintaining; LD: laser diode; YDF: Yb-doped fiber; ISO: isolator.
Fig. 2
Fig. 2 (a) Output pulse shape of the pulsed laser seed. (b) Spectrum of the pulsed laser seed.
Fig. 3
Fig. 3 (a) Measured PER values of the output laser from the second PM-YDFA in different power levels. (b) Measured total output spectrum and spectra of P1 and P2 at the highest output power 6.03 W from the second PM-YDFA.
Fig. 4
Fig. 4 The two different splice types of the connection point between the Out1-port and the PM-DCF. (a) Type I the parallel splice. (b) Type II the perpendicular splice.
Fig. 5
Fig. 5 (a) Output power versus the laser power of the second PM-YDFA of the two splice types. (b) PER of the output light of splice type I and II versus the output power.
Fig. 6
Fig. 6 Measured total output spectrum and spectra of P1 and P2. (a) Spectra of type I. (b) Spectra of type II.
Fig. 7
Fig. 7 Output power versus the pump power of the final PM-YDFA. Black dots are the measured values and the red line represents the linear fit. The inset shows the output spectrum at the maximum output power 124.8 W.
Fig. 8
Fig. 8 Output spectra from the final PM-YDFA in different power levels.
Fig. 9
Fig. 9 (a) Measured ASPER of the output light from the final PM-YDFA versus different output power. (b) Spectrum of the total output and spectrum of the two orthogonal polarization states at the highest output power

Metrics