Abstract

Surface plasmon resonance biosensors based on grating coupling exhibiting two plasmons are less known because usually thick gratings and thick metal films are used. In this paper we show that when thin dielectric grating is used on top of thin metal film two surface plasmons are generated at the two boundaries of the metal film represented as two dips in the reflectivity or peaks in the absorption. One of the plasmons is sensitive to the analyte refractive index (sensitivity 580nm/RIU) while the other is sensitive to the refractive index of the substrate; hence it can be used as a reference. This self-reference makes the measurement more accurate and less sensitive to temperature fluctuations and optomechanical drifts. Field distribution calculations show that the plasmon excited at the metal-substrate interface is a long range plasmon with large penetration depth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic metal–dielectric–metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality

Sherif H. El-Gohary, Jong Min Choi, Nak-Hyeon Kim, and Kyung Min Byun
Appl. Opt. 53(10) 2152-2157 (2014)

Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings

Seong Min Jang, Donghyun Kim, Seung Ho Choi, Kyung Min Byun, and Sung June Kim
Appl. Opt. 50(18) 2846-2854 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  3. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [Crossref] [PubMed]
  4. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  5. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
    [Crossref] [PubMed]
  6. D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
    [Crossref]
  7. I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
    [Crossref]
  8. O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).
  9. S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
    [Crossref] [PubMed]
  10. A. Mizutani, S. Urakawa, and H. Kikuta, “Highly sensitive refractive index sensor using a resonant grating waveguide on a metal substrate,” Appl. Opt. 54(13), 4161–4166 (2015).
    [Crossref]
  11. D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
    [Crossref] [PubMed]
  12. A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
    [Crossref]
  13. V. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
    [Crossref]
  14. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  15. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref] [PubMed]
  16. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  17. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  18. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3(4), 254–258 (1971).
    [Crossref]
  19. J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
    [Crossref]
  20. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
    [Crossref]
  21. A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
    [Crossref]
  22. A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
    [Crossref]
  23. K. Srivastava and I. Abdulhalim, “Self-referenced sensor utilizing extra-ordinary optical transmission from metal nanoslits array,” Opt. Lett. 40(10), 2425–2428 (2015).
    [Crossref]
  24. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. A. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15(13), 8163–8169 (2007).
    [Crossref] [PubMed]
  25. M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
    [Crossref]
  26. R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
    [Crossref]
  27. M. Auslender and S. Hava, “Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures,” Opt. Lett. 21(21), 1765–1767 (1996).
    [Crossref] [PubMed]
  28. I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, eds. W. Bock, I. Gannot, and S. Tanev (Springer-Verlag, Dec. 2008), pp. 211–228.
  29. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
    [Crossref]
  30. Y. H. Kim, S. J. Park, S. W. Jeon, S. Ju, C. S. Park, W. T. Han, and B. H. Lee, “Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe,” Opt. Express 20(21), 23744–23754 (2012).
    [Crossref] [PubMed]
  31. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46(12), 2219–2228 (2007).
    [Crossref] [PubMed]
  32. M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP Sov. Phys. 2, 466–475 (1956).

2015 (3)

2013 (1)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

2010 (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

2009 (4)

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[Crossref] [PubMed]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

2008 (5)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

2007 (4)

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. A. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15(13), 8163–8169 (2007).
[Crossref] [PubMed]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
[Crossref]

M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
[Crossref]

I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46(12), 2219–2228 (2007).
[Crossref] [PubMed]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

1996 (1)

1993 (1)

V. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

1971 (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3(4), 254–258 (1971).
[Crossref]

1956 (1)

M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP Sov. Phys. 2, 466–475 (1956).

Abdulhalim, I.

K. Srivastava and I. Abdulhalim, “Self-referenced sensor utilizing extra-ordinary optical transmission from metal nanoslits array,” Opt. Lett. 40(10), 2425–2428 (2015).
[Crossref]

A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
[Crossref]

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
[Crossref]

I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46(12), 2219–2228 (2007).
[Crossref] [PubMed]

Alleyne, C. J.

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Auslander, M.

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).

Auslender, M.

A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
[Crossref]

M. Auslender and S. Hava, “Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures,” Opt. Lett. 21(21), 1765–1767 (1996).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Brolo, A.

D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
[Crossref]

Chang, J. Y.

Chen, W. Y.

Ding, T. J.

Dostalek, J.

M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
[Crossref]

Dostálek, J.

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Goldner, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Gordon, R.

D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Hadad, B.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Han, W. T.

Hava, S.

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
[Crossref]

M. Auslender and S. Hava, “Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures,” Opt. Lett. 21(21), 1765–1767 (1996).
[Crossref] [PubMed]

Hayashi, S.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Homola, J.

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Jeon, S. W.

Ju, S.

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Karabchevsky, A.

A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

Kikuta, H.

Kim, Y. H.

Kirk, A. G.

Krasnykov, O.

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Lee, B. H.

Lin, S. F.

Magnusson, R.

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Markel, V.

V. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Maystre, D.

McPhedran, R. C.

Mizutani, A.

Nesterenko, D. V.

Nicorovici, N. A.

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Otto, A.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3(4), 254–258 (1971).
[Crossref]

Park, C. S.

Park, S. J.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Patskovsky, S.

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Rytov, M.

M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP Sov. Phys. 2, 466–475 (1956).

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Sekkat, Z.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Shokooh-Saremi, M.

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Sinton, D.

D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
[Crossref]

Sohler, W.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3(4), 254–258 (1971).
[Crossref]

Song, H.

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Srivastava, K.

Svavarsson, G.

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

Tsai, Y. L.

Urakawa, S.

Vala, M.

M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
[Crossref]

Wang, C. M.

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Yang, T. H.

Yoon, J.

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson, G. Svavarsson, J. Yoon, M. Shokooh-Saremi, and H. Song, “Experimental observation of leaky modes and plasmons in a hybrid resonance element,” Appl. Phys. Lett. 100(9), 091106 (2012).
[Crossref]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

J. Mod. Opt. (1)

V. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993).
[Crossref]

J. Nanophotonics (2)

A. Karabchevsky, M. Auslender, and I. Abdulhalim, “Dual-surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5(1), 051821 (2011).
[Crossref]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics 1(1), 011680 (2007).
[Crossref]

JETP Sov. Phys. (1)

M. Rytov, “Electromagnetic properties of a finely stratified medium,” JETP Sov. Phys. 2, 466–475 (1956).

Laser Photonics Rev. (1)

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev. 5(4), 571–606 (2011).
[Crossref]

Microfluid. Nanofluid. (1)

D. Sinton, R. Gordon, and A. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008).
[Crossref]

Nat. Mater. (2)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3(4), 254–258 (1971).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phot. Nano. Fund. Appl. (1)

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Phot. Nano. Fund. Appl. 7(4), 170–175 (2009).
[Crossref]

Phys. Express (1)

O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express 1(3), 183–190 (2011).

Phys. Rev. Lett. (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Plasmonics (1)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Proc. SPIE (1)

M. Vala, J. Dostalek, and J. Homola, “Diffraction grating-coupled surface plasmon resonance based on spectroscopy of long-range and short-range surface plasmons,” Proc. SPIE 6585, 658522 (2007).
[Crossref]

Sens. Actuators A Phys. (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Sens. Actuators B Chem. (1)

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

Other (1)

I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, eds. W. Bock, I. Gannot, and S. Tanev (Springer-Verlag, Dec. 2008), pp. 211–228.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the sensor based on dielectric grating on top of thin Ag film.
Fig. 2
Fig. 2 (a) Spectral response (at normal incidence), for different refractive indices of the analyte. Field distribution at λ r e s = 1536.2 n m : (b) Total electric field, (c) Total magnetic field.
Fig. 3
Fig. 3 (a) Spectral response (at normal incidence), for different refractive indices of the substrate. Field distribution at λ r e s = 1462.9 n m : (b) Total electric field, (c) Total magnetic field.
Fig. 4
Fig. 4 Reflectance, transmittance and absorbance spectra at normal incidence, when grating spaces filled with water.
Fig. 5
Fig. 5 (a) Spectral response (at normal incidence), for different refractive indices of the analyte. Field distribution at λ r e s = 1549.9 n m : (b) Total electric field, (c) Total magnetic field.
Fig. 6
Fig. 6 (a) Spectral response (at normal incidence), for different refractive indices of the substrate. Field distribution at λ r e s = 1463.5 n m : (b) Total electric field, (c) Total magnetic field.
Fig. 7
Fig. 7 Reflectance, transmittance and absorbance spectra at normal incidence, grating spaces filled with S i O 2 .
Fig. 8
Fig. 8 (a) Spectral response (at normal incidence), for different thicknesses of the metal layer, grating spaces filled with S i O 2 . Field distribution at metal thickness d = 100 n m : (b) Total electric field, (c) Total magnetic field.
Fig. 9
Fig. 9 Field distribution for the total electric and magnetic fields at normal incidence: (a) at resonance, λ r e s = 1549.9 n m , (b) off resonance, λ r e s = 1500 n m . Grating spaces filled with S i O 2 .
Fig. 10
Fig. 10 Analytical and numerical calculations of the resonance wavelengths for different grating periods: (a) at the top interface of the dielectric-metal film, (b) at the bottom interface of the dielectric-metal film.
Fig. 11
Fig. 11 Field distribution for the total magnetic field (at normal incidence) for different grating periods.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

k 0 n a sin θ ± m 2 π Λ = k 0 Re ( ε m e t a l ) n e f f 2 Re ( ε m e t a l ) + n e f f 2
λ r e s = ± Λ m Re ( ε m e t a l ) n e f f 2 Re ( ε m e t a l ) + n e f f 2
λ r e s _ s u b s t r a t e = ± Λ m Re ( ε m e t a l ) n s u b s t r a t e 2 Re ( ε m e t a l ) + n s u b s t r a t e 2
n e f f ( x , z ) = 0 h 0 Λ n g _ e f f ( x , z ) E g _ e f f ( x , z ) d x d z + h 0 Λ n a ( x , z ) E a ( x , z ) d x d z 0 0 Λ E ( x , z ) d x d z
E ( x , z ) exp ( z / δ ) exp ( i k x x )
n T E 0 = n S P 2 ( 1 f ) + n g 2 f
n T M 0 = n S P n g n S P 2 f + n g 2 ( 1 f )
n T E 2 = { n T E 0 2 + 1 3 [ π f ( 1 f ) Λ λ ] 2 ( n g 2 n S P 2 ) 2 } 1 / 2
n T M 2 = { n T M 0 2 + 1 3 [ π f ( 1 f ) Λ λ ] 2 ( 1 n g 2 1 n S P 2 ) 2 n T M 0 6 n T E 0 2 } 1 / 2

Metrics