Abstract

Terahertz (THz) spectroscopy is a promising method to measure the spectrum of low-frequency modes of molecules or ensembles, such as crystals and polymers, including proteins. However, the main drawback of THz spectroscopy is its extremely low sensitivity. In the present study, we report on signal enhancement in THz spectroscopy achieved by depositing amino acid molecules or their derivatives on a gold rod structured silicon substrate whose localized surface plasmon resonance is exhibited in the THz frequency region. The distinct peaks derived from the enhancement of the inherent spectrum based on a molecular crystal were clearly observed when a longitudinal plasmon resonance mode of the gold rod structure was excited and the plasmon resonance band overlapped the molecular/intermolecular vibrational mode. We discuss the mechanism by which surface-enhanced THz spectroscopy was induced from the viewpoint of the enhancement of light-matter coupling due to plasmon excitation and the modulation of the plasmon band by dipole coupling between the plasmon dipole and molecular/intermolecular vibrational modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection

Jingya Xie, Xi Zhu, Xiaofei Zang, Qingqing Cheng, Lin Chen, and Yiming Zhu
Opt. Mater. Express 8(1) 128-135 (2018)

Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA)

Daler R. Dadadzhanov, Tigran A. Vartanyan, and Alina Karabchevsky
Opt. Express 27(21) 29471-29478 (2019)

Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy

Wei Wei, Na Chen, Jinpeng Nong, Guilian Lan, Wei Wang, Juemin Yi, and Linlong Tang
Opt. Express 26(13) 16903-16916 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  3. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
    [Crossref] [PubMed]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  7. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
    [Crossref] [PubMed]
  8. S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
    [Crossref] [PubMed]
  9. M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  10. K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
    [Crossref]
  11. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
    [Crossref]
  12. K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
    [Crossref] [PubMed]
  13. T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
    [Crossref]
  14. R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
    [Crossref] [PubMed]
  15. E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
    [Crossref] [PubMed]
  16. T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
    [Crossref]
  17. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [Crossref]
  18. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
    [Crossref]
  19. G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
    [Crossref] [PubMed]
  20. C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
    [Crossref] [PubMed]
  21. Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
    [Crossref] [PubMed]
  22. S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
    [Crossref] [PubMed]
  23. L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
    [Crossref] [PubMed]
  24. Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
    [Crossref] [PubMed]
  25. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
    [Crossref] [PubMed]
  26. K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
    [Crossref] [PubMed]
  27. L. Razzari, A. Toma, M. Shalaby, M. Clerici, R. P. Zaccaria, C. Liberale, S. Marras, I. A. I. Al-Naib, G. Das, F. De Angelis, M. Peccianti, A. Falqui, T. Ozaki, R. Morandotti, and E. Di Fabrizio, “Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas,” Opt. Express 19(27), 26088–26094 (2011).
    [Crossref] [PubMed]
  28. H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008).
    [Crossref]
  29. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
    [Crossref] [PubMed]
  30. J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
    [Crossref] [PubMed]
  31. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  32. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
    [Crossref] [PubMed]
  33. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]
  34. T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
    [Crossref]
  35. I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
    [Crossref] [PubMed]
  36. H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
    [Crossref]
  37. N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
    [Crossref]

2015 (5)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
[Crossref] [PubMed]

2014 (3)

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

2013 (3)

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

2012 (2)

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

2009 (1)

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

2008 (4)

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008).
[Crossref]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
[Crossref]

2007 (3)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (2)

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

2000 (2)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1997 (3)

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1990 (1)

E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
[Crossref] [PubMed]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Ahn, K. J.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Al-Naib, I. A. I.

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Arikawa, T.

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
[Crossref]

Bagiante, S.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

Bahk, Y.-M.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Balu, R.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Biju, V.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brown, M. G.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Cabiaux, V.

E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
[Crossref] [PubMed]

Chen, J. Y.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Choi, G.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Choi, J.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Clerici, M.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Crowe, T. W.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

D’Auria, S.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Das, G.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Day, G. M.

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

De Angelis, F.

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Di Fabrizio, E.

Ebbesen, T. W.

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Enderli, F.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

Fabianska, J.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

Fairclough, J. P. A.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Falqui, A.

Fang, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feuillet-Palma, C.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

Feurer, T.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Friscic, T.

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Gao, S.

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

Gao, W.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Gelmont, B.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Genet, C.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

George, J.

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Gladden, L. F.

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Globus, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Goormaghtigh, E.

E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
[Crossref] [PubMed]

Gregurick, S. K.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Gryczynski, I.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Gu, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Halas, N. J.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Han, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Han, Z.

Heilweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Hesler, J.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Hosako, I.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008).
[Crossref]

Hutchison, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Hutchison, J. A.

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

Itoh, T.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jones, S.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Jones, W.

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Juodkazis, S.

Kajikawa, K.

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Kambara, O.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khromova, T.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Kim, D.-S.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Kim, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Kim, Y. H.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kono, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Kumar, N.

Lakowicz, J. R.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Lee, J.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Liberale, C.

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, K.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Lu, X.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Maeda, S.

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

Maier, S. A.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Makihara, K.

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

Malicka, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Markelz, A. G.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Marras, S.

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Misawa, H.

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
[Crossref] [PubMed]

Mizeikis, V.

Morandotti, R.

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Nagai, M.

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
[Crossref]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nguyen, K. L.

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nordlander, P.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Ozaki, T.

Ozaki, Y.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Peccianti, M.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Planken, P. C. M.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Pupillo, G.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Ramakrishnan, G.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

Razzari, L.

Reeves-McLaren, N.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Ristic, R. I.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Ruysschaert, J. M.

E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
[Crossref] [PubMed]

Saito, S.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Sasaki, K.

Saykally, R. J.

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Shalabney, A.

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Shalaby, M.

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Shu, J.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Sigg, H.

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

Sirtori, C.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

Song, H.

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Suda, Y.

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Sugimoto, I.

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

Takahashi, K.

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

Tamaru, H.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Tame, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tamura, A.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Tanaka, D.

Tanaka, K.

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
[Crossref]

Tian, Z.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Todorov, Y.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

Toma, A.

Tominaga, K.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Ueno, K.

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Vasanelli, A.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

Wakida, S.-i.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

West, A. R.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Woolard, D.

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Wu, H.

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Xie, L.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Xing, Q.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Yamamoto, K.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Yamamoto, N.

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Yamamoto, Y. S.

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Yasuda, H.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008).
[Crossref]

Ying, Y.

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

Zaccaria, R. P.

Zhang, H.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Zhang, W.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Zhang, Y.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zukowski, E.

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

S. Gao, K. Ueno, and H. Misawa, “Plasmonic antenna effects on photochemical reactions,” Acc. Chem. Res. 44(4), 251–260 (2011).
[Crossref] [PubMed]

ACS Nano (1)

Y.-M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D.-S. Kim, and P. C. M. Planken, “Plasmon enhanced terahertz emission from single layer graphene,” ACS Nano 8(9), 9089–9096 (2014).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[Crossref]

Biophys. J. (1)

R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G. Markelz, and S. K. Gregurick, “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J. 94(8), 3217–3226 (2008).
[Crossref] [PubMed]

Chem. Phys. Lett. (3)

T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008).
[Crossref]

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[Crossref]

Cryst. Growth Des. (1)

H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Cryst. Growth Des. 10(2), 988–994 (2010).
[Crossref]

Eur. J. Biochem. (1)

E. Goormaghtigh, V. Cabiaux, and J. M. Ruysschaert, “Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films,” Eur. J. Biochem. 193(2), 409–420 (1990).
[Crossref] [PubMed]

J. Amino Acids (1)

I. Sugimoto, S. Maeda, Y. Suda, K. Makihara, and K. Takahashi, “Low-vacuum deposition of glutamic acid and pyroglutamic acid: a facile methodology for depositing organic materials beyond amino acids,” J. Amino Acids 2014, 434056 (2014).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

K. Liu, M. G. Brown, and R. J. Saykally, “Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer,” J. Phys. Chem. A 101(48), 8995–9010 (1997).
[Crossref]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

J. Phys. Chem. Lett. (1)

J. George, A. Shalabney, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Liquid-phase vibrational strong coupling,” J. Phys. Chem. Lett. 6(6), 1027–1031 (2015).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

T. Globus, D. Woolard, T. W. Crowe, T. Khromova, B. Gelmont, and J. Hesler, “Terahertz Fourier transform characterization of biological materials in a liquid phase,” J. Phys. D Appl. Phys. 39(15), 3405–3413 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47(3), 1632–1634 (2008).
[Crossref]

Nano Lett. (1)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

K. L. Nguyen, T. Friscić, G. M. Day, L. F. Gladden, and W. Jones, “Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation,” Nat. Mater. 6(3), 206–209 (2007).
[Crossref] [PubMed]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

T. Itoh, Y. S. Yamamoto, H. Tamaru, V. Biju, S.-i. Wakida, and Y. Ozaki, “Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance,” Phys. Rev. B 89(19), 195436 (2014).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Bagiante, F. Enderli, J. Fabiańska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Sci. Rep. 5, 8051 (2015).
[Crossref] [PubMed]

L. Xie, W. Gao, J. Shu, Y. Ying, and J. Kono, “Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics,” Sci. Rep. 5, 8671 (2015).
[Crossref] [PubMed]

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep. 3, 1361 (2013).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Soft Matter (1)

N. Yamamoto, O. Kambara, K. Yamamoto, A. Tamura, S. Saito, and K. Tominaga, “Temperature and hydration dependence of low-frequency spectra of poly-l-glutamic acid with different secondary structures studied by terahertz time-domain spectroscopy,” Soft Matter 8(6), 1997–2006 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM image of gold rod structures 200 nm wide, 100 μm long and 40 nm thick. (b) Extinction spectra of gold rod structures with different rod lengths. Black: 100 μm, red: 50 μm, blue: 35 μm, and pink: 25 μm.
Fig. 2
Fig. 2 (a) Rod length dependence of the LSPR peak wavelength. The inset numeric depicts the resonant frequency. (b) Nanorod length dependence of the LSPR peak wavelength. The inset figure and number indicate the extinction spectra of the gold nanorods and the resonant frequency for features of various lengths. Black: 700 nm, red: 560 nm, blue: 420 nm, and pink: 280 nm. (c) Near-field intensity distribution of a gold rod design that was 200 nm wide, 80 μm long, and 40 nm thick at the plasmon resonant frequency.
Fig. 3
Fig. 3 (a) Extinction spectrum of the L-sodium glutamate pellet with a thickness of 0.9 mm. (b) Extinction spectra of the gold rod structured silicon substrate before the deposition of L-sodium glutamate (red) and after deposition of L-sodium glutamate (blue), respectively. The structure design was the same as the 100-μm-long gold rod structure presented in Fig. 1(b).
Fig. 4
Fig. 4 (a) FT-IR transmission spectra of the L-glutamic acid film constituted from poly-L-glutamic acid (black) and L-pyroglutamic acid (red). (b) Surface-enhanced THz spectra of the L-glutamic acid film composed of poly-L-glutamic acid (black) and L-pyroglutamic acid (red). The broken red line indicates the traced LSPR band of the gold rod structure with a length of 80 μm before the deposition of L-glutamic acid.
Fig. 5
Fig. 5 Surface-enhanced THz spectra of L- and D-glutamic acid films composed of L-pyroglutamic acid (red) and D- pyroglutamic acid (blue). The spectrum of L-pyroglutamic acid was obtained from Fig. 4(b).

Metrics