Abstract

We present a numerical and experimental study of a guided-mode-resonance (GMR) device for detecting surface-bound light-absorbing thin films. The GMR device functions as an optical resonator at the wavelength strongly absorbed by the thin film. The GMR mode produces an evanescent field that results in enhanced optical absorption by the thin film. For a 100-nm-thick lossy thin film, the GMR device enhances its absorption coefficients over 26 × compared to a conventional glass substrate. Simulations show the clear quenching effect of the GMR when the extinction coefficient is greater than 0.01. At the resonant wavelength, the reflectance of the GMR surface correlates well with the degree of optical absorption. GMR devices are fabricated on a glass substrate using a surface-relief grating and a titanium-dioxide coating. To analyze a visible absorbing dye, the reflection coefficient of dye-coated GMR devices was measured. The GMR-based method was also applied to detecting acid gases, such as hydrochloric vapor, by monitoring the change in absorption in a thin film composed of a pH indicator, bromocresol green. This technique potentially allows absorption analysis in the visible and infrared ranges using inexpensive equipment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films

Virendra N. Rai, Arvind K. Srivastava, Chandrachud Mukherjee, and Sudip K. Deb
Appl. Opt. 51(14) 2606-2615 (2012)

Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating

Jian Hung Lin, Chun-Yen Tseng, Ching-Ting Lee, Jeff F. Young, Hung-Chih Kan, and Chia Chen Hsu
Opt. Express 22(3) 2790-2797 (2014)

Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells

Mukul Agrawal and Peter Peumans
Opt. Express 16(8) 5385-5396 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Pavia, Introduction to Spectroscopy (Brooks/Cole, Cengage Learning, 2009).
  2. G. G. Hammes, Spectroscopy for the Biological Sciences (Wiley-Interscience, 2005).
  3. A. Hordvik, “Measurement techniques for small absorption coefficients: recent advances,” Appl. Opt. 16(11), 2827–2833 (1977).
    [PubMed]
  4. E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
    [Crossref]
  5. O. Taqatqa and H. Al Attar, “Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer,” Eur. Phys. J. Appl. Phys. 37(1), 61–64 (2007).
    [Crossref]
  6. L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
    [Crossref]
  7. C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
    [Crossref]
  8. G. Gagliardi and H.-P. Loock, Cavity-Enhanced Spectroscopy and Sensing (Springer Berlin Heidelberg, 2014).
  9. W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
    [Crossref] [PubMed]
  10. S. M. Kim, W. Zhang, and B. T. Cunningham, “Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” Opt. Express 18(5), 4300–4309 (2010).
    [Crossref] [PubMed]
  11. Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  12. A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
    [Crossref] [PubMed]
  13. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [Crossref]
  14. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  15. V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
    [Crossref] [PubMed]
  16. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Pub., 2005).
  17. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
    [Crossref] [PubMed]
  18. Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
    [Crossref]
  19. Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
    [Crossref] [PubMed]

2014 (1)

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

2013 (1)

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

2012 (3)

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
[Crossref] [PubMed]

2011 (1)

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

2010 (3)

2007 (1)

O. Taqatqa and H. Al Attar, “Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer,” Eur. Phys. J. Appl. Phys. 37(1), 61–64 (2007).
[Crossref]

2006 (1)

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

2002 (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

1990 (1)

1988 (1)

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

1977 (1)

Al Attar, H.

O. Taqatqa and H. Al Attar, “Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer,” Eur. Phys. J. Appl. Phys. 37(1), 61–64 (2007).
[Crossref]

Ariese, F.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Bagby, J. S.

Bai, H.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

Cabral, J. T.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Chadha, A.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chang, Y. C.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

Chaudhery, V.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

Chu, A.

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

Cunningham, B. T.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

S. M. Kim, W. Zhang, and B. T. Cunningham, “Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” Opt. Express 18(5), 4300–4309 (2010).
[Crossref] [PubMed]

Davies, J.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Dolan, P. R.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Eckardt, P.

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

Fan, S. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Ge, C.

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

George, S.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

Goldshlag, W.

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

Gooijer, C.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Hillier, A. C.

W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
[Crossref] [PubMed]

Hordvik, A.

Huang, C. S.

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

Jia, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Joannopoulos, J. D.

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Kim, S. M.

Kuo, C. N.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

Lan, T.

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

Li, S. N.

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

Liu, Y. H.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Lu, M.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

Ma, Z. Q.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Magnusson, R.

Menon, L.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Moharam, M. G.

Petefish, J. W.

W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
[Crossref] [PubMed]

Piper, J. R.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Pokhriyal, A.

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

Rushworth, C. M.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Schulz, S.

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express 18(24), 24793–24808 (2010).
[Crossref] [PubMed]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

Shuai, Y. C.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Smith, J. M.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Tan, Y. F.

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

Taqatqa, O.

O. Taqatqa and H. Al Attar, “Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer,” Eur. Phys. J. Appl. Phys. 37(1), 61–64 (2007).
[Crossref]

Ubachs, W.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Vallance, C.

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

van der Sneppen, L.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Walther, H. G.

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

Wang, S. S.

Welsch, E.

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

Wiskerke, A.

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Xia, F. N.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yang, H. J.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yeh, W. H.

W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
[Crossref] [PubMed]

Zhang, W.

Zhao, D. Y.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhou, W. D.

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Anal. Chem. (1)

W. H. Yeh, J. W. Petefish, and A. C. Hillier, “Resonance quenching and guided modes arising from the coupling of surface plasmons with a molecular resonance,” Anal. Chem. 84(2), 1139–1145 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

L. van der Sneppen, A. Wiskerke, F. Ariese, C. Gooijer, and W. Ubachs, “Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity,” Anal. Chim. Acta 558(1-2), 2–6 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. H. Liu, A. Chadha, D. Y. Zhao, J. R. Piper, Y. C. Jia, Y. C. Shuai, L. Menon, H. J. Yang, Z. Q. Ma, S. H. Fan, F. N. Xia, and W. D. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett. 97(12), 121108 (2010).
[Crossref] [PubMed]

Can. J. Phys. (1)

E. Welsch, H. G. Walther, P. Eckardt, and T. Lan, “Low-absorption measurement of optical thin films using the photothermal surface-deformation technique,” Can. J. Phys. 66(7), 638–644 (1988).
[Crossref]

Chem. Phys. Lett. (1)

C. M. Rushworth, J. Davies, J. T. Cabral, P. R. Dolan, J. M. Smith, and C. Vallance, “Cavity-enhanced optical methods for online microfluidic analysis,” Chem. Phys. Lett. 554, 1–14 (2012).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

O. Taqatqa and H. Al Attar, “Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer,” Eur. Phys. J. Appl. Phys. 37(1), 61–64 (2007).
[Crossref]

IEEE Sens. J. (1)

Y. F. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sens. J. 12(5), 1174–1180 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Phys. Rev. B (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Sensors (Basel) (2)

V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B. T. Cunningham, “Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence,” Sensors (Basel) 13(5), 5561–5584 (2013).
[Crossref] [PubMed]

Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors (Basel) 11(4), 4060–4072 (2011).
[Crossref] [PubMed]

Other (4)

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Pub., 2005).

G. Gagliardi and H.-P. Loock, Cavity-Enhanced Spectroscopy and Sensing (Springer Berlin Heidelberg, 2014).

D. L. Pavia, Introduction to Spectroscopy (Brooks/Cole, Cengage Learning, 2009).

G. G. Hammes, Spectroscopy for the Biological Sciences (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) GMR sensor substrate. The absorbing material is deposited onto the GMR surface. (b) Simulated transmittance and reflectance of the TM resonance mode in the GMR structure. (c) Simulated absorption spectrum and transmission and reflection spectra in the GMR structure.
Fig. 2
Fig. 2 (a) Simulated absorption coefficients as functions of the extinction coefficient for a thin-film-coated GMR structure and a glass substrate. The coefficients are calculated at the GMR resonant wavelength. (b) Near-field distribution cross section within one period of the GMR structure, under the resonant condition, for three different extinction coefficients: (i) 10−5, (ii) 10−2, and (iii) 10−1. The white lines indicate the TiO2 boundary. (c) Calculated reflectance and transmittance as functions of the extinction coefficient, when the GRM substrate operates at the resonant wavelength.
Fig. 3
Fig. 3 (a) Photograph of the GMR device fabricated on a glass coverslip. (b) SEM image of the top view of the TiO2-coated grating pattern. (c) Schematic diagram of the reflection measurement setup.
Fig. 4
Fig. 4 Enhanced optical absorption by dye molecules on a GMR substrate. (a) Reflection spectra for a GMR substrate with different dilutions of absorbing dye. (b) Reflectance measured at 618 nm for the different dye dilutions on a GMR substrate (red spots) and on a glass substrate (black squares).
Fig. 5
Fig. 5 (a) Reflection spectra of a BCG-coated GMR device after different exposure times to HCl vapor. Inset: magnified reflection spectra near the resonant wavelength. (b) Transmission coefficients of BCG (black squares) and FWHM (red spots) as functions of exposure time.

Metrics