Abstract

We present a comprehensive analysis of spectral characteristics of terahertz radiation from plasmonic photomixers. We fabricate plasmonic photomixer prototypes with plasmonic contact electrode gratings on a low temperature grown GaAs substrate and characterize the spectral properties of the generated terahertz radiation by use of a heterodyne detection scheme. Our analysis shows that linewidth, stability, and frequency tuning range of the generated terahertz radiation are directly determined by linewidth, stability, and wavelength tuning range of optical pump beam and not affected by device geometry, substrate properties, optical pump power level and other operational settings. Our study indicates the crucial role of optical sources in realizing high performance terahertz spectroscopy and wireless communication systems based on plasmonic photomixers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer

S.-H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O’Gorman, L. P. Barry, and M. Jarrahi
Opt. Express 23(24) 31206-31215 (2015)

Radiation characteristics of large-area photomixer used for generation of continuous-wave terahertz radiation

Armaghan Eshaghi, Mahmoud Shahabadi, and Lukas Chrostowski
J. Opt. Soc. Am. B 29(4) 813-817 (2012)

Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation

Christopher W. Berry, Mohammad R. Hashemi, Sascha Preu, Hong Lu, Arthur C. Gossard, and Mona Jarrahi
Opt. Lett. 39(15) 4522-4524 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  3. P. H. Siegel, “THz instruments for space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
    [Crossref]
  4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
    [Crossref]
  5. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
    [Crossref]
  6. D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
    [Crossref]
  7. N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
    [Crossref]
  8. L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
    [Crossref] [PubMed]
  9. P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  10. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
    [Crossref]
  11. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
    [Crossref] [PubMed]
  12. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  13. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
    [Crossref]
  14. E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
    [Crossref]
  15. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
    [Crossref]
  16. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
    [Crossref] [PubMed]
  17. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]
  18. S.-H. Yang and M. Jarrahi, “Frequency-Tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
    [Crossref]
  19. M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
    [Crossref]
  20. S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
    [Crossref]
  21. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  22. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  23. S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
    [Crossref] [PubMed]
  24. B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
    [Crossref]
  25. N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
    [Crossref]
  26. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  27. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
    [Crossref] [PubMed]
  28. S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
    [Crossref]
  29. S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
    [Crossref] [PubMed]
  30. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
    [Crossref] [PubMed]
  31. Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
    [Crossref]
  32. C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012).
    [Crossref]
  33. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996).
    [Crossref]
  34. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
    [Crossref]
  35. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  36. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  37. D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
    [Crossref]
  38. S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
    [Crossref] [PubMed]

2015 (4)

S.-H. Yang and M. Jarrahi, “Frequency-Tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

2014 (5)

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

2013 (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

2012 (5)

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

2011 (5)

S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
[Crossref]

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

2008 (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (3)

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

2006 (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

2004 (2)

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

2003 (3)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2002 (1)

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
[Crossref]

2000 (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
[Crossref]

D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

1996 (1)

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

1989 (1)

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Ahn, J.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Akalin, T.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Argence, B.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Arnone, D. D.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

Bansal, R.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Berry, C. W.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012).
[Crossref]

Blary, K.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Brown, E. R.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Burton Lewis, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Choi, Y.

Cluff, J. A.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Coinon, C.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Cole, B. E.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Crozat, P.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Darcie, T. E.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Dohler, G. H.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Ducournau, G.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Fitzgerald, A. J.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Forst, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
[Crossref]

Fukasawa, R.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Gordon, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Heshmat, B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Hindle, F.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Huang, S.-W.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Huo, Y.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
[Crossref]

Imai, T.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Jacobsen, R. H.

Jarrahi, M.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S.-H. Yang and M. Jarrahi, “Frequency-Tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012).
[Crossref]

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Jeong, K.-H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

Jepsen, P. U.

Jin, K. H.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Kato, K.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Keiding, S. R.

Keilmann, F.

D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

Kemp, M. C.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Kurz, H.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
[Crossref]

Kwong, D.-L.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Lampin, J. F.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Lampin, J.-F.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Le Coq, Y.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Le Targat, R.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Lepilliet, S.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Lim, J.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

Liu, S.

S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
[Crossref]

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Malzer, S.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Mangeney, J.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Masnadi-Shirazi, M.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

McIntosh, K. A.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Merigault, A.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Mouret, G.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Murakowski, J.

D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

Nagai, N.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Nagel, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
[Crossref]

Nahata, A.

S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
[Crossref]

Nicolodi, D.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Oh, Y.-J.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Park, S.-G.

S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, “Terahertz photoconductive antenna with metal nanoislands,” Opt. Express 20(23), 25530–25535 (2012).
[Crossref] [PubMed]

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Pepper, M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

Peytavit, E.

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Sakai, K.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
[Crossref]

Santarelli, G.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Saxena, V. K.

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Shou, X.

S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
[Crossref]

Siegel, P.

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Siegel, P. H.

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[Crossref]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

Taday, P. F.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Tani, M.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
[Crossref]

Taylor, G. W.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
[Crossref]

Tiedje, T.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Van Zandt, L. L.

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Wallace, V. P.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

Wang, L. J.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Weide, D. V. D.

D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

Wong, C. W.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

Yamauchi, K.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Yang, J.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Yang, S.-H.

S.-H. Yang and M. Jarrahi, “Frequency-Tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

Yardimci, N. T.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Ye, J. C.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yi, M.

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Yu, M.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Zerounian, N.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Zhang, W.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Zhou, H.

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

ACS Nano (1)

S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano 6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, “Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor,” Appl. Phys. Lett. 99(22), 223508 (2011).
[Crossref]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang and M. Jarrahi, “Frequency-Tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. V. D. Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopywith electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (4)

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S. Liu, X. Shou, and A. Nahata, “Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna,” IEEE Trans. Terahertz Sci. Technol. 1(2), 412–415 (2011).
[Crossref]

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

J. Appl. Phys. (3)

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480 (1993).
[Crossref]

J. Biol. Phys. (1)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2-3), 257–259 (2003).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (3)

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. Terahertz Waves 23(6), 819–839 (2002).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), 601–618 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39(1), 96–100 (2000).
[Crossref]

Nano Lett. (1)

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10^-18 level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Proc. SPIE (1)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertztechnology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Sci. Rep. (1)

S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, and C. W. Wong, “A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz,” Sci. Rep. 5, 13355 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram and scanning electron microscope (SEM) images of a fabricated LT-GaAs plasmonic photomixer prototype mounted on a hyper-hemispherical silicon lens.
Fig. 2
Fig. 2 Experimental setup for characterizing the spectral properties of the terahertz radiation from the LT-GaAs plasmonic photomixer prototypes.
Fig. 3
Fig. 3 (a) The measured IF spectrum from a fabricated LT-GaAs plasmonic photomixer prototype (black dots) and the Gaussian fitting curve with a linewidth of 2.4 MHz FWHM (red line) at 0.5 THz. (b) The measured terahertz radiation spectra of the LT-GaAs plasmonic photomixer prototype at an optical pump power of 150 mW, bias voltage of 10 V, and optical pump beating frequencies in the 0.34 – 0.74 THz range.
Fig. 4
Fig. 4 (a) The linewidth of the radiation spectra of the plasmonic photomixer prototype over the 0.34 – 0.74 THz frequency range at an optical pump power of 150 mW and bias voltage of 10 V. (b) The phase noise of the generated terahertz radiation at 1 MHz from the radiation center frequency over the 0.34 – 0.74 THz frequency range.
Fig. 5
Fig. 5 The measured IF spectra at 0.7 THz as a function of the optical pump power.
Fig. 6
Fig. 6 The time-integrated IF spectra at an optical beating frequency of 0.7 THz with a 200s, 400s, and 800s acquisition time.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f DFB1 (ω)= 1 2π σ DFB1 e (ω ω DFB1 ) 2 2 σ DFB1 2
f DFB2 (ω)= 1 2π σ DFB2 e (ω ω DFB2 ) 2 2 σ DFB2 2
E pump (t)= E DFB1 + E DFB2 = E 0 f DFB1 (ω) e iωt dω + E 0 f DFB2 (ω) e iωt dω
P pump (ω)= E DFB1 E DFB2 2 η 0 = | E 0 | 2 2 η 0 1 2π σ pump e (ω ω THz ) 2 2 σ pump 2
dn dt = η e α hυ.A P pump ( ω ) n τ
n( ω )= η e ατ hυ.A P pump ( ω )( 1 1+jωτ )
dI( ω )= q η e ατ μ e hυ.A P pump ( ω )( 1 1+jωτ ) e jωl/V dl L
I( ω )= q η e ατ μ e hυ.A P pump ( ω )( 1 1+jωτ )( 1 e jωL/V jωL/V )

Metrics