Abstract

We realized a single-carrier, polarization-multiplexed 32 Gbaud 128 QAM coherent transmission. Digital frequency-domain equalization enabled us to achieve waveform distortion compensation of a wideband data signal with high frequency resolution. Thus, we successfully increased the QAM multiplicity to 128 at 32 Gbaud, and transmitted 448 Gbit/s data over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz. This is the highest multiplicity and spectral efficiency yet achieved in a coherent QAM transmission at a baud rate of as high as 32 Gbaud.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz

Shohei Beppu, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 23(4) 4960-4969 (2015)

320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator

Yixin Wang, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 24(19) 22088-22096 (2016)

Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 22(20) 23776-23785 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, G. Cheren, and S. Zederbaum, “1.5-Tb/s guard-banded superchannel transmission over 56x100-km ULAF using 30-Gbaud pilot-free OFDM-16QAM signals with 5.75-b/s/Hz net spectral efficiency,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Amsterdam, 2012, Th3C5.
  2. J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Cannes, 2014, Tu.3.3.4.
    [Crossref]
  3. A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.
  4. G. Raybon, A. Adamiecki, P. J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, and K. Rush, “All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London, 2013, PD2-D-3.
    [Crossref]
  5. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
    [Crossref]
  6. S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
    [Crossref]
  7. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Brussels, 2008, We.2.E.3.
  8. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [Crossref]
  9. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  10. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  11. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]

2015 (1)

2010 (1)

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

1996 (1)

Abakoumov, D.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Adamiecki, A.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Altenhain, L.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Baxter, G.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Bélanger, P.-A.

Beppu, S.

Bielik, A.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Chandrasekhar, S.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Corteselli, S.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Doran, N. J.

Frisken, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Gnauck, A.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Kasai, K.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Marshall, T.

Miyamoto, Y.

A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.

Nagatani, M.

A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.

Nakazawa, M.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Nebendahl, B.

Nosaka, H.

A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.

Paré, C.

Pilori, D.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Poole, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

Randel, S.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Raybon, G.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Sano, A.

A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.

Schmid, R.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Szafraniec, B.

Villeneuve, A.

Winzer, P. J.

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

Yoshida, M.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Zhou, H.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

IEICE Electron. Express (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (7)

X. Liu, S. Chandrasekhar, P. J. Winzer, T. Lotz, J. Carlson, J. Yang, G. Cheren, and S. Zederbaum, “1.5-Tb/s guard-banded superchannel transmission over 56x100-km ULAF using 30-Gbaud pilot-free OFDM-16QAM signals with 5.75-b/s/Hz net spectral efficiency,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Amsterdam, 2012, Th3C5.

J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Cannes, 2014, Tu.3.3.4.
[Crossref]

A. Sano, M. Nagatani, H. Nosaka, and Y. Miyamoto, “5x1-Tb/s PDM-16QAM transmission over 1,920 km using high-speed InP MUX-DAC integrated module,” inProceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2015, M3G.3.

G. Raybon, A. Adamiecki, P. J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, and K. Rush, “All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London, 2013, PD2-D-3.
[Crossref]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “ Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” inProceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuF2.
[Crossref]

S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. J. Winzer, L. Altenhain, A. Bielik, and R. Schmid, “All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM,” inProceedings of the Optical Fiber Communication Conference (OFC), San Francisco, 2014, Th5C.8.
[Crossref]

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Brussels, 2008, We.2.E.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for 448 Gbit/s, pol-mux 32 Gbaud 128 QAM-150 km coherent transmission.
Fig. 2
Fig. 2 Optical spectra of 32 Gbaud 128 QAM data and pilot tone signals (0.01 nm resolution bandwidth).
Fig. 3
Fig. 3 (a) Optimization of launch power in 448 Gbit/s, 32 Gbaud 128 QAM-150 km coherent transmission, (b) Optical spectra of 448 Gbit/s-data signal before and after 150 km transmission (0.1 nm resolution bandwidth).
Fig. 4
Fig. 4 (a) IF spectrum at 20 GHz with 2 MHz span and (b) its SSB phase noise spectrum (10 Hz~1 MHz) under OPLL condition.
Fig. 5
Fig. 5 Electrical spectrum of demodulated 32 Gbaud 128 QAM signal.
Fig. 6
Fig. 6 Constellations for 32 Gbaud 128 QAM signal for (a) back-to-back and (b) 150 km transmissions.
Fig. 7
Fig. 7 BER characteristics for pol-mux 32 Gbaud 128 QAM-150 km transmission.

Metrics