Abstract

This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin autofocus camera module by a large-stroke micromachined deformable mirror

Hsin-Ta Hsieh, Hsiang-Chun Wei, Meng-Hsuan Lin, Wei-Yao Hsu, Yuan-Chieh Cheng, and Guo-Dung John Su
Opt. Express 18(11) 11097-11104 (2010)

Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors

Yu-Hung Huang, Hsiang-Chun Wei, Wei-Yao Hsu, Yuan-Chieh Cheng, and Guo-Dung John Su
Appl. Opt. 53(29) H248-H256 (2014)

Electromagnetic biaxial microscanner with mechanical amplification at resonance

Ah Ran Cho, Aleum Han, Suna Ju, Haesoo Jeong, Jae-Hyoung Park, Inhoi Kim, Jong-Uk Bu, and Chang-Hyeon Ji
Opt. Express 23(13) 16792-16802 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
    [Crossref]
  2. N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10(3), 629–635 (2004).
    [Crossref]
  3. R. Kingslake and R. B. Johnson, Lens Design Fundamentals, 2nd ed. (Academic, 2010).
  4. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [Crossref] [PubMed]
  5. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  6. P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, “Micromachined silicon nitride deformable mirrors for focus control,” Opt. Lett. 26(16), 1280–1282 (2001).
    [Crossref] [PubMed]
  7. S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22(1), 94–106 (2013).
    [Crossref]
  8. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995).
    [Crossref] [PubMed]
  9. J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
    [Crossref]
  10. P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
    [Crossref]
  11. T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
    [Crossref]
  12. A. Liotard, F. Zamkotsian, V. Conedera, N. Fabre, P. Lanzoni, H. Camon, and F. Chazallet, “Polymer-based micro-deformable mirror for adaptive optics,” in SPIE MOEMS-MEMS 2006 Micro and Nanofabrication, (International Society for Optics and Photonics, 2006), paper 61130R.
  13. O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
    [Crossref]
  14. Y. Hishinuma and E. H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
    [Crossref]
  15. M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, “Micromirrors for adaptive-optics arrays,” in Technical Digest of the 11th International Conference on Solid-State Sensors and Actuators-Transducers ’01 Munich (IEEE, 2001), pp. 1290–1293.
    [Crossref]
  16. M. Pallapa and J. T. W. Yeow, “Design, fabrication and testing of a polymer composite based hard-magnetic mirror for biomedical scanning applications,” J. Electrochem. Soc. 161(2), B3006–B3013 (2013).
    [Crossref]
  17. R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
    [Crossref]
  18. Y.-H. Huang, H.-C. Wei, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors,” Appl. Opt. 53(29), H248–H256 (2014).
    [Crossref] [PubMed]
  19. P. R. Griffiths and E. V. Miseo, “Infrared and raman instrumentation for mapping and imaging,” in Infrared and Raman Spectroscopic Imaging, 2nd ed., R. Salzer and H. W. Siesler, eds. (John Wiley & Sons, 2014).
  20. P.-H. I. Hsu, M. Huang, S. Wagner, Z. Suo, and J. Sturm, “Plastic deformation of thin foil substrates with amorphous silicon islands into spherical shapes,” in MRS Proceedings, (Cambridge University Press, 2000), paper Q8.6.1.
    [Crossref]
  21. L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
    [Crossref]
  22. J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
    [Crossref]
  23. J. R. Brauer, Magnetic Actuators and Sensors (John Wiley & Sons, 2006).
  24. M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
    [Crossref]
  25. A. Toh, Z. Wang, and S. Ng, “Fabrication of embedded microvalve on PMMA microfluidic devices through surface functionalization,” in MEMS/MOEMS 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (IEEE, 2008), 267–272.
    [Crossref]
  26. G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
    [Crossref]

2014 (2)

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Y.-H. Huang, H.-C. Wei, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors,” Appl. Opt. 53(29), H248–H256 (2014).
[Crossref] [PubMed]

2013 (2)

M. Pallapa and J. T. W. Yeow, “Design, fabrication and testing of a polymer composite based hard-magnetic mirror for biomedical scanning applications,” J. Electrochem. Soc. 161(2), B3006–B3013 (2013).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22(1), 94–106 (2013).
[Crossref]

2011 (2)

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
[Crossref]

2010 (1)

J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
[Crossref]

2009 (1)

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[Crossref]

2008 (2)

T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
[Crossref]

M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
[Crossref]

2006 (1)

Y. Hishinuma and E. H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[Crossref]

2005 (1)

J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
[Crossref]

2004 (1)

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10(3), 629–635 (2004).
[Crossref]

2002 (1)

2001 (2)

P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, “Micromachined silicon nitride deformable mirrors for focus control,” Opt. Lett. 26(16), 1280–1282 (2001).
[Crossref] [PubMed]

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
[Crossref]

1997 (1)

1995 (1)

Beuret, C.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Bierden, P.

Bifano, T.

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

Chen, L.

Chen, T.-Y.

T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
[Crossref]

Cheng, Y.-C.

Chiu, C.-W. E.

T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
[Crossref]

De Rooij, N.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Dellmann, L.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Despont, M.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Dickensheets, D. L.

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22(1), 94–106 (2013).
[Crossref]

P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, “Micromachined silicon nitride deformable mirrors for focus control,” Opt. Lett. 26(16), 1280–1282 (2001).
[Crossref] [PubMed]

Doble, N.

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10(3), 629–635 (2004).
[Crossref]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref] [PubMed]

Friholm, R. A.

Gijs, M. A. M.

M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
[Crossref]

Godil, A. A.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Hane, K.

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[Crossref]

Henderson, B. G.

J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
[Crossref]

Himmer, P. A.

Hishinuma, Y.

Y. Hishinuma and E. H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[Crossref]

Hokari, R.

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[Crossref]

Howe, R. T.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Hsieh, H.-T.

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
[Crossref]

Hsu, W.-Y.

Huang, Y.-H.

Hurd, D.

J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
[Crossref]

Lee, L. P.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Liang, J.

Limbach, P. A.

J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
[Crossref]

Lin, P.-Y.

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
[Crossref]

Lorenz, H.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Lukes, S. J.

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22(1), 94–106 (2013).
[Crossref]

Mansell, J. D.

J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
[Crossref]

Mecomber, J. S.

J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
[Crossref]

Miller, D. T.

Olivier, S.

Pallapa, M.

M. Pallapa and J. T. W. Yeow, “Design, fabrication and testing of a polymer composite based hard-magnetic mirror for biomedical scanning applications,” J. Electrochem. Soc. 161(2), B3006–B3013 (2013).
[Crossref]

Peter, Y.-A.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Racine, G.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Renaud, P.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Robertson, G.

J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
[Crossref]

Roth, S.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Sarro, P. M.

Shen, M.

M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
[Crossref]

Singer, B.

Solgaard, O.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Su, G. D. J.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
[Crossref]

Su, G.-D. J.

Y.-H. Huang, H.-C. Wei, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors,” Appl. Opt. 53(29), H248–H256 (2014).
[Crossref] [PubMed]

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
[Crossref]

T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
[Crossref]

Toshiyoshi, H.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
[Crossref]

Vdovin, G.

Vettiger, P.

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Wei, H.-C.

Williams, D. R.

Wu, M. C.

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
[Crossref]

Yamahata, C.

M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
[Crossref]

Yang, E. H.

Y. Hishinuma and E. H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[Crossref]

Yeow, J. T. W.

M. Pallapa and J. T. W. Yeow, “Design, fabrication and testing of a polymer composite based hard-magnetic mirror for biomedical scanning applications,” J. Electrochem. Soc. 161(2), B3006–B3013 (2013).
[Crossref]

Yoon, G.

Zappe, H.

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (2)

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10(3), 629–635 (2004).
[Crossref]

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T.-Y. Chen, C.-W. E. Chiu, and G.-D. J. Su, “A large-stroke MEMS deformable mirror fabricated by low-stress fluoropolymer membrane,” IEEE Photonics Technol. Lett. 20(10), 830–832 (2008).
[Crossref]

G. D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Photonics Technol. Lett. 13(6), 606–608 (2001).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

J. S. Mecomber, D. Hurd, and P. A. Limbach, “Enhanced machining of micron-scale features in microchip molding masters by CNC milling,” Int. J. Mach. Tools Manuf. 45(12–13), 1542–1550 (2005).
[Crossref]

J. Electrochem. Soc. (1)

M. Pallapa and J. T. W. Yeow, “Design, fabrication and testing of a polymer composite based hard-magnetic mirror for biomedical scanning applications,” J. Electrochem. Soc. 161(2), B3006–B3013 (2013).
[Crossref]

J. Microelectromech. Syst. (3)

O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.-A. Peter, and H. Zappe, “Optical MEMS: from micromirrors to complex systems,” J. Microelectromech. Syst. 23(3), 517–538 (2014).
[Crossref]

Y. Hishinuma and E. H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22(1), 94–106 (2013).
[Crossref]

J. Opt. (1)

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13(5), 055404 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

M. Shen, C. Yamahata, and M. A. M. Gijs, “Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator,” Microelectron. Eng. 85(5–6), 1104–1107 (2008).
[Crossref]

Nat. Photonics (1)

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

J. D. Mansell, B. G. Henderson, and G. Robertson, “Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications,” Proc. SPIE 7861, 78160D (2010).
[Crossref]

Other (8)

R. Kingslake and R. B. Johnson, Lens Design Fundamentals, 2nd ed. (Academic, 2010).

A. Liotard, F. Zamkotsian, V. Conedera, N. Fabre, P. Lanzoni, H. Camon, and F. Chazallet, “Polymer-based micro-deformable mirror for adaptive optics,” in SPIE MOEMS-MEMS 2006 Micro and Nanofabrication, (International Society for Optics and Photonics, 2006), paper 61130R.

M. A. Helmbrecht, U. Srinivasan, C. Rembe, R. T. Howe, and R. S. Muller, “Micromirrors for adaptive-optics arrays,” in Technical Digest of the 11th International Conference on Solid-State Sensors and Actuators-Transducers ’01 Munich (IEEE, 2001), pp. 1290–1293.
[Crossref]

A. Toh, Z. Wang, and S. Ng, “Fabrication of embedded microvalve on PMMA microfluidic devices through surface functionalization,” in MEMS/MOEMS 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (IEEE, 2008), 267–272.
[Crossref]

J. R. Brauer, Magnetic Actuators and Sensors (John Wiley & Sons, 2006).

P. R. Griffiths and E. V. Miseo, “Infrared and raman instrumentation for mapping and imaging,” in Infrared and Raman Spectroscopic Imaging, 2nd ed., R. Salzer and H. W. Siesler, eds. (John Wiley & Sons, 2014).

P.-H. I. Hsu, M. Huang, S. Wagner, Z. Suo, and J. Sturm, “Plastic deformation of thin foil substrates with amorphous silicon islands into spherical shapes,” in MRS Proceedings, (Cambridge University Press, 2000), paper Q8.6.1.
[Crossref]

L. Dellmann, S. Roth, C. Beuret, G. Racine, H. Lorenz, M. Despont, P. Renaud, P. Vettiger, and N. De Rooij, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” in 1997 International Conference on Solid State Sensors and Actuators, (IEEE, 1997), 641–644.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of proposed convex micromirror device and operation mechanism: (a) 3D cross-sectional view, (b) flat surface with device at rest, (c) convex surface with actuation current, and (d) focus-variation principle, where focus varies from f1 to f2 with surface deflection.
Fig. 2
Fig. 2 Fabrication process flow for deformable convex micromirror: (a) mirror membrane, (b) actuator structure, and (c) mirror system assembly.
Fig. 3
Fig. 3 Photographs of fabricated deformable convex micromirror: (a) back of mirror membrane (left) and top surface, (b) actuator components, (c) assembled mirror device, and (d) mirror device with application of electrical power.
Fig. 4
Fig. 4 (top) Measured surface displacement of micromirror expressed by color-coding, and (bottom) corresponding surface height characteristics at applied currents of (a) 0.5 A, (b) 0.6 A, (c) 0.7 A, and (d) 0.8 A (3D profile).
Fig. 5
Fig. 5 (a) Surface deflection of mirror center as a function of applied current and (b) Surface roughness of the mirror.
Fig. 6
Fig. 6 (a) Optical power, and electrical power required by mirror device as functions of input bias current, and (b) temperature of the solenoid versus applied current.
Fig. 7
Fig. 7 (a) Experimental setup for focus control with fabricated deformable convex micromirror, and (b) optical configuration of setup.
Fig. 8
Fig. 8 (a) Object pattern itself, and captured images through microscope lens with actuation currents of (b) 0.4 A (defocused image), (c) 0.6 A, and (d) 0.8 A.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B = μ ( N l ) . I
F = B 2 2 μ ,
P ( 1 / f ) = 16 x D 2 ,

Metrics