Abstract

Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are power-efficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and cost-efficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quaternary TDM-PAM as upgrade path of access PON beyond 10Gb/s

Jochen Verbrugghe, Bernhard Schrenk, Johan Bauwelinck, Xin Yin, Stefanos Dris, Jose A. Lazaro, Vasilis Katopodis, Paraskevas Bakopoulos, and Hercules Avramopoulos
Opt. Express 20(26) B15-B20 (2012)

Demonstration of symmetrical 50-Gb/s TDM-PON in O-band supporting over 33-dB link budget with OLT-side amplification

Chengcheng Li, Jian Chen, Zhengxuan Li, Yingxiong Song, Yingchun Li, and Qianwu Zhang
Opt. Express 27(13) 18343-18350 (2019)

1Gbps full-duplex links for ultra-dense-WDM 6.25GHz frequency slots in optical metro-access networks

Jose A. Altabas, David Izquierdo, Jose A. Lazaro, Adolfo Lerin, Felix Sotelo, and Ignacio Garces
Opt. Express 24(1) 555-565 (2016)

References

  • View by:
  • |
  • |
  • |

  1. ITU-T, “G. 989.x, 40 Gigabit-capable passive optical networks 2 (NG-PON2),” to be available publicly.
  2. D. T. van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver,” J. Lightwave Technol. 33(8), 1675–1680 (2015).
    [Crossref]
  3. D. V. Veen, V. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON transmission over 40-km using Duo-binary detection with a wow cost 7-GHz APD-based receiver,” in ECOC (IEEE, 2012), paper Tu.3.B.1 (2012).
  4. V. Houtsma, D. V. Veen, A. Gnauck, and P. Iannone, “APD-Based Duobinary direct detection Receivers for 40 Gbps TDM-PON,” in OFC (OSA, 2015), paper Th4H.1.
  5. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17(11), 2235–2248 (1999).
    [Crossref]
  6. J. L. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J.-P. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proceedings of ECOC (IEEE, 2015), paper PDP4.4.
  7. N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/λ PON using hierarchical star QAM format,” J. Lightwave Technol. 31(18), 3085–3092 (2013).
    [Crossref]
  8. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” in OFC (OSA, 2009), paper PDPD5.
  9. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express 20(18), 20666–20679 (2012).
    [Crossref] [PubMed]
  10. J. L. Wei, K. Grobe, and H. Griesser, “Cost-efficient high-speed modulation for next-generation PONs,” in Proceedings of Photonic Networks (2015), 16.
  11. W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
    [Crossref]
  12. W.-J. Choi, A. E. Bond, J. Kim, J. Zhang, R. Jambunathan, H. Foulk, S. O’Brien, J. V. Norman, D. Vandegrift, C. Wanamaker, J. Shakespeare, and H. Cao, “Lower insertion loss and low dispersion penalty InGaAsP quantum-well high-speed electroabsorption modulator for 40-Gb/s very-short-reach, long-reach, and long-haul applications,” J. Lightwave Technol. 20(12), 2052–2056 (2002).
    [Crossref]
  13. K. Ou, Y. Luo, and F. Effenberger, “XG-PON up-stream enhancement,” presentation at FSAN meeting, Las Vegas, USA. Unpublished (2010).
  14. D. Lee and B. Y. Yoon, “Optic Cost Estimation for 10G EPON Downstream,” presented at IEEE P802.3av Task Force interim meeting. San Francisco, CA, USA (2007).
  15. S. Dahlfort, B. Skubic, and D. Hood, “Power consumption of NG-PON2 components,” FSAN meeting, San Diego, US, unpublished (2011).
  16. K. Grobe, “Component-level power consumption of WDM-PON w/ tunable laser diodes,” FSAN NG-PON2 Workshop, San Diego, unpublished (2011).
  17. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  18. R. S. Tucker, “Green optical communications—part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
    [Crossref]
  19. J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]

2015 (2)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

D. T. van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver,” J. Lightwave Technol. 33(8), 1675–1680 (2015).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

R. S. Tucker, “Green optical communications—part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

2002 (1)

2001 (1)

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

1999 (1)

Bond, A. E.

Cao, H.

Cheng, Q.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Choi, W.-J.

Conradi, J.

Cunningham, D. G.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Foulk, H.

Giddings, R. P.

Gnauck, A. H.

Houtsma, V. E.

Hugues-Salas, E.

Iannone, P.

Iiyama, N.

Ingham, J. D.

Jambunathan, R.

Kaiser, W.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

Kani, J.

Kim, J.

Norman, J. V.

O’Brien, S.

Penty, R. V.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Rosenkranz, W.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

Shakespeare, J.

Tang, J. M.

Terada, J.

Tucker, R. S.

R. S. Tucker, “Green optical communications—part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

van Veen, D. T.

Vandegrift, D.

Walklin, S.

Wanamaker, C.

Wei, J. L.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

White, I. H.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Wichers, M.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

Wuth, T.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

Yoshimoto, N.

Zhang, J.

IEEE Commun. Mag. (1)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. S. Tucker, “Green optical communications—part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10 Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photonics Technol. Lett. 13(8), 884–886 (2001).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (1)

Other (10)

J. L. Wei, K. Grobe, and H. Griesser, “Cost-efficient high-speed modulation for next-generation PONs,” in Proceedings of Photonic Networks (2015), 16.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” in OFC (OSA, 2009), paper PDPD5.

J. L. Wei, N. Eiselt, H. Griesser, K. Grobe, M. Eiselt, J. J. Vegas-Olmos, I. T. Monroy, and J.-P. Elbers, “First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications,” in Proceedings of ECOC (IEEE, 2015), paper PDP4.4.

D. V. Veen, V. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON transmission over 40-km using Duo-binary detection with a wow cost 7-GHz APD-based receiver,” in ECOC (IEEE, 2012), paper Tu.3.B.1 (2012).

V. Houtsma, D. V. Veen, A. Gnauck, and P. Iannone, “APD-Based Duobinary direct detection Receivers for 40 Gbps TDM-PON,” in OFC (OSA, 2015), paper Th4H.1.

ITU-T, “G. 989.x, 40 Gigabit-capable passive optical networks 2 (NG-PON2),” to be available publicly.

K. Ou, Y. Luo, and F. Effenberger, “XG-PON up-stream enhancement,” presentation at FSAN meeting, Las Vegas, USA. Unpublished (2010).

D. Lee and B. Y. Yoon, “Optic Cost Estimation for 10G EPON Downstream,” presented at IEEE P802.3av Task Force interim meeting. San Francisco, CA, USA (2007).

S. Dahlfort, B. Skubic, and D. Hood, “Power consumption of NG-PON2 components,” FSAN meeting, San Diego, US, unpublished (2011).

K. Grobe, “Component-level power consumption of WDM-PON w/ tunable laser diodes,” FSAN NG-PON2 Workshop, San Diego, unpublished (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Architectures of next-generation PON using (a) electrical Duobinary, (b) optical Duobinary, and (c) PAM-4 formats for downstream transmissions.
Fig. 2
Fig. 2 (a) EAM output optical power versus driving voltage and (b) modulation factor versus driving voltage.
Fig. 3
Fig. 3 Receiver sensitivity versus fiber dispersion for optical Duobinary subject to various (a) transmitter lowpass shaping filter bandwidths (b) APD-TIA receiver bandwidths. (De-)MUX filters shown in Fig. 1 are not included.
Fig. 4
Fig. 4 Receiver sensitivity versus fiber dispersion for optical Duobinary subject to various (a) transmitter lowpass shaping filter bandwidths (b) APD-TIA receiver bandwidths. (De-)MUX filters as shown in Fig. 1 are included.
Fig. 5
Fig. 5 Optical sensitivity at a BER of 10−3 versus fiber length for electrical Duobinary and PAM-4 subject to cases with and without EAM nonlinearities. The inset noise-free eye diagrams are for PAM-4 signal with EAM nonlinearities.
Fig. 6
Fig. 6 Optical sensitivity at a BER of 10−3 versus fiber length.
Fig. 7
Fig. 7 Transceiver constituent cost of each scheme. LDD: laser diode driver.
Fig. 8
Fig. 8 Transceiver constituent power dissipation of each scheme.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E out = E in cos( π 2 S(t)+ V π V π )
dϕ dt = α(S(t)) 2P(t) dP dt

Metrics