Abstract

Metallic nanoparticle arrays support localized surface plasmon resonances (LSPRs) and propagating surface lattice resonances (SLRs). We study the control of quantum dot (QD) emission coupled to the optical modes of silver nanoparticle arrays, both experimentally and numerically. With a hybrid lithography-functionalization method, the QDs are deposited in the vicinity of the nanoparticles. Directionality and enhancement of the emission are observed in photoluminescence spectra and fluorescence lifetime measurements, respectively. Similar features are also demonstrated in the numerical simulations. The tunable emission of this type of hybrid structures could lead to potential applications in light sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles [Invited]

Mohammad Ramezani, Matthijs Berghuis, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 36(7) E88-E103 (2019)

Coupling of spontaneous emission from GaN–AlN quantum dots into silver surface plasmons

Arup Neogi, Hadis Morkoç, Takamasa Kuroda, and Atsushi Tackeuchi
Opt. Lett. 30(1) 93-95 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  2. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref] [PubMed]
  3. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
    [Crossref] [PubMed]
  4. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
    [Crossref] [PubMed]
  5. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
    [Crossref]
  6. B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref] [PubMed]
  7. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).
  8. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
    [Crossref]
  9. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref] [PubMed]
  10. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
    [Crossref] [PubMed]
  11. A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
    [Crossref]
  12. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref] [PubMed]
  13. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  14. A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
    [Crossref]
  15. L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
    [Crossref] [PubMed]
  16. R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
    [Crossref]
  17. K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
    [Crossref]
  18. V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
    [Crossref]
  19. R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).
    [Crossref] [PubMed]
  20. W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
    [Crossref]
  21. I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
    [Crossref]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  23. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).
    [Crossref]
  24. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17, 2334 (2009).
    [Crossref] [PubMed]
  25. M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
    [Crossref]
  26. A. Abdullah and S. Annapoorni, “Fluorescent silver nanoparticles via exploding wire technique,” Pramana 65, 815–819 (2005).
    [Crossref]
  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer,2007), Ch. 4.
  28. J. Seo, R. Fudala, W.-J. Kim, R. Rich, B. Tabibi, H. Cho, Z. Gryczynski, I. Gryczynski, and W. Yu, “Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications,” Opt. Mater. Express 2, 1026–1039 (2012).
    [Crossref]
  29. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  30. R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
    [Crossref]
  31. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
    [Crossref]
  32. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
    [Crossref]
  33. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
    [Crossref]
  34. E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
    [Crossref] [PubMed]
  35. A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
    [Crossref] [PubMed]
  36. J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
    [Crossref]

2015 (4)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
[Crossref] [PubMed]

2014 (4)

J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
[Crossref]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

2013 (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

2012 (3)

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

J. Seo, R. Fudala, W.-J. Kim, R. Rich, B. Tabibi, H. Cho, Z. Gryczynski, I. Gryczynski, and W. Yu, “Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications,” Opt. Mater. Express 2, 1026–1039 (2012).
[Crossref]

2011 (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

2010 (3)

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).
[Crossref] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
[Crossref]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref] [PubMed]

2005 (4)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[Crossref] [PubMed]

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

A. Abdullah and S. Annapoorni, “Fluorescent silver nanoparticles via exploding wire technique,” Pramana 65, 815–819 (2005).
[Crossref]

2003 (1)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

2000 (1)

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

1997 (1)

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

1996 (1)

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

1992 (1)

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
[Crossref]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).
[Crossref]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Abdullah, A.

A. Abdullah and S. Annapoorni, “Fluorescent silver nanoparticles via exploding wire technique,” Pramana 65, 815–819 (2005).
[Crossref]

Albella, P.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
[Crossref] [PubMed]

Alivisatos, A. P.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Annapoorni, S.

A. Abdullah and S. Annapoorni, “Fluorescent silver nanoparticles via exploding wire technique,” Pramana 65, 815–819 (2005).
[Crossref]

Auguié, B.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Barnes, W.

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Cai, M.

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

Cao, D.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

Cardinal, T.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Carminati, R.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Cazé, A.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

Cho, H.

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Colvin, V. L.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Davis, J. A.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

de Dood, M. J. A.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

De Geyter, B.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

de Mello Donegá, C.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

De Wilde, Y.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Eskelinen, A.-P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Fudala, R.

Gao, H.

Geluk, E. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Goldstein, A. N.

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
[Crossref]

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Gomez Rivas, J.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Gómez Rivas, J.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Grabar, K. C.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Gray, S. K.

Gryczynski, I.

Gryczynski, Z.

Guthrie, A. P.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Hakala, T.

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

Hart, D. C. t.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Heikkinen, M. O. J.

J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
[Crossref]

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Henzie, J.

Higashitani, K.

I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
[Crossref]

Hilhorst, J.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Ho, M.

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Hooft, G. W. t

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Itzhakov, S.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Jackson, M. A.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Kim, D.-H.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Kim, W.-J.

Koenderink, A. F.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Koole, R.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Krachmalnicoff, V.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Kreuzer, M. P.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer,2007), Ch. 4.

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Lamprecht, B.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Le Nestour, A.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Lee, M. H.

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Lelong, G.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[Crossref] [PubMed]

Lounis, B.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Lozano, G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Maali, A.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Maier, S. A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
[Crossref] [PubMed]

Martikainen, J.-P.

J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
[Crossref]

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

McMahon, J. M.

McNamee, C. E.

I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
[Crossref]

Meijerink, A.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Moerland, R.

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

Moerland, R. J.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Musick, M. D.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Natan, M. J.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Odom, T. W.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17, 2334 (2009).
[Crossref] [PubMed]

Oron, D.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[Crossref] [PubMed]

Parak, W. J.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).
[Crossref] [PubMed]

Pemberton, J. E.

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

Peragut, F.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

Pierrat, R.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Quidant, R.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Rakovich, A.

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).
[Crossref]

Rechberger, W.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Rekola, H.

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

Rekola, H. T.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Rich, R.

Rigneault, H.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Rocco, F.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Schatz, G. C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17, 2334 (2009).
[Crossref] [PubMed]

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Schokker, A. H.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Seo, J.

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref] [PubMed]

Shi, L.

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

Smith, P. C.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Sperling, R. A.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Tabibi, B.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Thompson, W. R.

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
[Crossref]

Treguer, M.

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Ureña, E. B.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Vakarelski, I. U.

I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
[Crossref]

Väkeväinen, A. I.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

van Beijnum, F.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

van Blaaderen, A.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

van Exter, M. P.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

van Schooneveld, M. M.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Van Thourhout, D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

van Veldhoven, P. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Vanmaekelbergh, D.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Verschuuren, M. A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Walter, D. G.

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Weeber, J. C.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Wenger, J.

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Yang, A.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Yu, W.

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Zou, S.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

ACS Nano (1)

A. Rakovich, P. Albella, and S. A. Maier, “Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities,” ACS Nano 9, 2648–2658 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

E. B. Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314 (2012).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (2)

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. Gomez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[Crossref]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379 (2000).
[Crossref]

Chem. Mater. (1)

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. t. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater. 20, 2503–2512 (2008).
[Crossref]

Chem. Phys. Lett. (1)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62–67 (2005).
[Crossref]

Colloids Surfaces A Physicochem. Eng. Asp. (1)

I. U. Vakarelski, C. E. McNamee, and K. Higashitani, “Deposition of silica nanoparticles on a gold surface via a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane,” Colloids Surfaces A Physicochem. Eng. Asp. 295, 16–20 (2007).
[Crossref]

J. Am. Chem. Soc. (2)

K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, “Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture,” J. Am. Chem. Soc. 118, 1148–1153 (1996).
[Crossref]

V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc. 114, 5221–5230 (1992).
[Crossref]

Langmuir (1)

W. R. Thompson, M. Cai, M. Ho, and J. E. Pemberton, “Hydrolysis and condensation of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on Ag and Au surfaces,” Langmuir 13, 2291–2302 (1997).
[Crossref]

Nano Lett. (2)

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Philos. Trans. A. Math. Phys. Eng. Sci. (1)

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. A. Math. Phys. Eng. Sci. 368, 1333–1383 (2010).
[Crossref] [PubMed]

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

J.-P. Martikainen, M. O. J. Heikkinen, and P. Törmä, “Condensation phenomena in plasmonics,” Phys. Rev. A 90, 053604 (2014).
[Crossref]

Phys. Rev. B (2)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Phys. Rev. Lett. (6)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

L. Shi, T. Hakala, H. Rekola, J.-P. Martikainen, R. Moerland, and P. Törmä, “Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes,” Phys. Rev. Lett. 112, 153002 (2014).
[Crossref] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

B. Auguié and W. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Pramana (1)

A. Abdullah and S. Annapoorni, “Fluorescent silver nanoparticles via exploding wire technique,” Pramana 65, 815–819 (2005).
[Crossref]

Proc. R. Soc. A Math. Phys. Eng. Sci. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Solid State Sci. (1)

M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, and B. Lounis, “Fluorescent silver oligomeric clusters and colloidal particles,” Solid State Sci. 7, 812–818 (2005).
[Crossref]

Surf. Sci. Rep. (1)

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surf. Sci. Rep. 70, 1–41 (2015).
[Crossref]

Other (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer,2007), Ch. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic view of the functionalization process that deposits QDs on top of silver surface. (b) The fabrication flow of the silver nanoparticle array functionalized with QDs. The functionalization process is performed before the lift-off, in order to deposit QDs on the silver particles only.
Fig. 2
Fig. 2 AFM images of (a) bare silver nanorods on a fused silica substrate and (b) silver nanorods with QDs deposited on top following the functionalization process described in the text. Right panels: AFM cross sections along the white dotted lines.
Fig. 3
Fig. 3 (a) Schematic view of the setup used for the characterization of the light emitted by the sample. The light is collected in the Fourier space, allowing to obtain angle-resolved emission spectra from the nanoparticle arrays. Angle-resolved extinction spectra from three bare arrays: (b) px = 365 nm, dx = 180 nm; (c) px = 415 nm, dx = 210 nm; (d) px = 435 nm, dx = 220 nm; and emission spectra from the functionalized arrays with QDs on top of the same geometrical parameters (e)–(g). The inset of (g) shows the normalized emission spectrum of the colloidal QDs.
Fig. 4
Fig. 4 Angle-resolved emission spectra from bare plasmonic nanoarrays: (a) px = 365 nm, dx = 219 nm, (b) px = 415 nm, dx = 249 nm, (c) px = 470 nm, dx = 282 nm; and from functionalized samples with QDs on top of arrays with the same geometrical parameters (d–f).
Fig. 5
Fig. 5 (a) Schematic view of the setup used for the lifetime measurement of the QD emission. Light is collected in the image plane with a photodetector which is connected to a TCSPC card. (b) Normalized fluorescence decay histograms for QDs embedded in index matching oil (black curve) and for QDs coupled with the plasmonic nanoarrays with the periodicity px = 400 nm (blue curve) and px = 415 nm (red curve).
Fig. 6
Fig. 6 (a) Schematic view of the simulation configuration for the calculation of a dipole coupled with a single nanorod. (b) Calculated decay rate enhancement of an emitter (dipole) placed on top of a silver nanorod for three dipole orientations. (c) The calculated extinction spectra of the same nanorod for two angles of incidence. The incident light is polarized along the x-axis.
Fig. 7
Fig. 7 (a) Schematic view of the simulation configuration for the calculation of the decay rate enhancement of dipoles coupled with an array of silver nanorods. (b) Calculated decay rate enhancements of the dipoles coupled with nanoparticle arrays for two lattice periodicities px.

Metrics