Abstract

We report on a novel near infrared SiGe phototransistor fabricated by a standard silicon photonics foundry. The device is first investigated by simulations. The fabricated devices are characterized in terms of current-voltage characteristics at different optical power. Typical phototransistors exhibit 1.55µm record responsivity at low optical power exceeding 232A/W and 42A/W at 5V and 1V bias, respectively. A differential detection scheme is also proposed for the dark current cancellation to significantly increase the device sensitivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Germanium wrap-around photodetectors on Silicon photonics

Ryan Going, Tae Joon Seok, Jodi Loo, Kyle Hsu, and Ming C. Wu
Opt. Express 23(9) 11975-11984 (2015)

GaAs optoelectronic neuron arrays

Steven Lin, Annette Grot, Jiafu Luo, and Demetri Psaltis
Appl. Opt. 32(8) 1275-1289 (1993)

Ultra-Low-Power 10 to 28.5 Gb/s CMOS-Driven VCSEL-Based Optical Links [Invited]

Jonathan E. Proesel, Benjamin G. Lee, Alexander V. Rylyakov, Christian W. Baks, and Clint L. Schow
J. Opt. Commun. Netw. 4(11) B114-B123 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. P. Absil, P. Verheyen, P. De Heyn, M. Pantouvaki, G. Lepage, J. De Coster, and J. Van Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23(7), 9369–9378 (2015).
    [Crossref] [PubMed]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  3. S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
    [Crossref]
  4. L. Colace and G. Assanto, “Germanium on Silicon for near-infrared light sensing,” IEEE Photonics J. 1(2), 69–79 (2009).
    [Crossref]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  6. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [Crossref] [PubMed]
  7. D. Marris-Morini, L. Virot, C. Baudot, J. M. Fédéli, G. Rasigade, D. Perez-Galacho, J. M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Bœuf, and L. Vivien, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22(6), 6674–6679 (2014).
    [Crossref] [PubMed]
  8. K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
    [Crossref]
  9. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  10. R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
    [Crossref]
  11. A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
    [Crossref]
  12. S. Sahni, X. Luo, J. Liu, Y. H. Xie, and E. Yablonovitch, “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Opt. Lett. 33(10), 1138–1140 (2008).
    [Crossref] [PubMed]
  13. J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).
  14. R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
    [Crossref] [PubMed]
  15. K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
    [Crossref]
  16. P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
    [Crossref] [PubMed]
  17. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
    [Crossref]
  18. C. Claeys and E. Simoen, Extended Defects in Germanium: Fundamental and Technological Aspects (Springer-Verlag, 2009).
  19. V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
    [Crossref]
  20. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 3rd ed. (John Wiley & Sons, 2003), Ch. 7.

2015 (2)

2014 (2)

2013 (1)

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

2012 (1)

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

2011 (2)

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

2010 (3)

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

2009 (3)

L. Colace and G. Assanto, “Germanium on Silicon for near-infrared light sensing,” IEEE Photonics J. 1(2), 69–79 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[Crossref] [PubMed]

2008 (3)

S. Sahni, X. Luo, J. Liu, Y. H. Xie, and E. Yablonovitch, “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Opt. Lett. 33(10), 1138–1140 (2008).
[Crossref] [PubMed]

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

2007 (1)

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Absil, P. P.

Ang, K.

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

Assanto, G.

L. Colace and G. Assanto, “Germanium on Silicon for near-infrared light sensing,” IEEE Photonics J. 1(2), 69–79 (2009).
[Crossref]

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Assefa, S.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Baudot, C.

Bœuf, F.

Brindel, P.

Chen, L.

Chrostowski, L.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Colace, L.

L. Colace and G. Assanto, “Germanium on Silicon for near-infrared light sensing,” IEEE Photonics J. 1(2), 69–79 (2009).
[Crossref]

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Crozat, P.

Davids, P. S.

De Coster, J.

De Heyn, P.

DeRose, C. T.

Fang, Q.

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Fédéli, J. M.

Fisher, M.

Flueckiger, J.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Gaberl, W.

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

Going, R.

Going, R. W.

R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
[Crossref]

Green, W. M. J.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Hartmann, J. M.

Hofbauer, M.

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

Hsu, K.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Kostov, P.

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

Kuzum, D.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Kwong, D.

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Kwong, D. L.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

Kwonh, D.

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

Latif, S.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Lee, S.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

Lepage, G.

Lin, C.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Liow, T.

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Lipson, M.

Liu, J.

Liu, T. K.

R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
[Crossref]

Lo, G.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

Loo, J.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[Crossref] [PubMed]

R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
[Crossref]

Luan, H. C.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Luo, X.

Marris-Morini, D.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Okyay, A. K.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Olivier, S.

Pantouvaki, M.

Perez-Galacho, D.

Perna, A.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Rasigade, G.

Rylyakov, A. V.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Sahni, S.

Saraswat, K.

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

Schow, C. L.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Seok, T. J.

Song, J.

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Sorianello, V.

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

Starbuck, A. L.

Trotter, D. C.

Van Campenhout, J.

Verheyen, P.

Virot, L.

Vivien, L.

Vlasov, Y. A.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Wang, J.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

Wang, Y.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Watts, M. R.

Wu, M. C.

R. Going, T. J. Seok, J. Loo, K. Hsu, and M. C. Wu, “Germanium wrap-around photodetectors on Silicon photonics,” Opt. Express 23(9), 11975–11984 (2015).
[Crossref] [PubMed]

R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
[Crossref]

Xia, F.

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

Xie, Y. H.

Yablonovitch, E.

Yu, M.

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

Zimmermann, H.

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

Zortman, W. A.

Appl. Phys. Lett. (1)

V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93(11), 111115 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K. Ang, T. Liow, M. Yu, Q. Fang, J. Song, G. Lo, and D. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

R. W. Going, J. Loo, T. K. Liu, and M. C. Wu, “Germanium gate photo MOSFET integrated to Silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201607 (2014).
[Crossref]

S. Assefa, F. Xia, W. M. J. Green, C. L. Schow, A. V. Rylyakov, and Y. A. Vlasov, “CMOS-Integrated optical receivers for on-chip interconnects,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1376–1385 (2010).
[Crossref]

IEEE Photonics J. (1)

L. Colace and G. Assanto, “Germanium on Silicon for near-infrared light sensing,” IEEE Photonics J. 1(2), 69–79 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (2)

A. K. Okyay, D. Kuzum, S. Latif, D. A. B. Miller, and K. Saraswat, “Silicon Germanium CMOS optoelectronic switching device: bringing light to latch,” IEEE Trans. Electron. Dev. 54(12), 3252–3259 (2007).
[Crossref]

K. Ang, M. Yu, G. Lo, and D. Kwonh, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near infrared regime,” IEEE Trans. Electron. Dev. 29(10), 1124–1127 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Wang, M. Yu, G. Lo, D. L. Kwong, and S. Lee, “Silicon waveguide integrated Germanium JFET photodetector with improved speed performance,” J. Lightwave Technol. 23(12), 765–767 (2011).

Nat. Photonics (1)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Solid-State Electron. (1)

P. Kostov, W. Gaberl, M. Hofbauer, and H. Zimmermann, “PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process,” Solid-State Electron. 74(5), 49–57 (2012).
[Crossref] [PubMed]

Other (2)

C. Claeys and E. Simoen, Extended Defects in Germanium: Fundamental and Technological Aspects (Springer-Verlag, 2009).

R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits 3rd ed. (John Wiley & Sons, 2003), Ch. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Device schematic: cross section (a) and mask layout (b)

Fig. 2
Fig. 2

Simulated current density distribution at VCE = 5V with the collector on the right.

Fig. 3
Fig. 3

Simulated energy band diagrams at BE (a) and BC (b) heterojunctions.

Fig. 4
Fig. 4

Simulated I-V characteristics for different incident optical powers.

Fig. 5
Fig. 5

Current versus voltage at different input laser powers (a). Responsivity versus voltage at different powers (b).

Fig. 6
Fig. 6

1.55µm responsivity versus optical power at different applied voltage (a). ION/IOFF ratio at 1.55µm versus applied voltage at different laser powers (b).

Fig. 7
Fig. 7

Differential amplifier circuit (a). Responsivity versus resistive load at 1.55µm and −30dBm power for different supply voltages (b).

Fig. 8
Fig. 8

1.55µm responsivity (expressed in V/W) versus optical power at different supply voltage for 100kΩ load.

Metrics