Abstract

An augmented reality (AR) system involving the electrically tunable location of a projected image is implemented using a liquid-crystal (LC) lens. The projected image is either real or virtual. By effectively doubling the LC lens power following light reflection, the position of a projected virtual image can be made to vary from 42 to 360 cm, while the tunable range for a projected real image is from 27 to 52 cm on the opposite side. The optical principle of the AR system is introduced and could be further developed for other tunable focusing lenses, even those with a lower lens power. The benefits of this study could be extended to head-mounted display systems for vision correction or vision compensation. We believe that tunable focusing LC optical elements are promising developments in the thriving field of AR applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field

Hung-Shan Chen and Yi-Hsin Lin
Opt. Express 21(15) 18079-18088 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).
  2. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  3. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  4. J. P. Rolland and H. Hua, “Head-Mounted Display Systems,” in Encyclopedia of Optical Engineering, R. B. Johnson and R. G. Driggers, eds. (Taylor and Francis, 2005), pp. 1–13.
  5. S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  6. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  7. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Speed, optical power, and off-axis imaging improvement of refractive liquid crystal lenses,” Appl. Opt. 53(6), 1124–1131 (2014).
    [Crossref] [PubMed]
  8. H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
    [Crossref]
  9. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
    [Crossref]
  10. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  11. H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
    [Crossref] [PubMed]
  12. G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [Crossref]
  13. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003).
    [Crossref] [PubMed]
  14. H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
    [Crossref]
  15. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  16. G. M. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008).
  17. F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295 (1960).
    [Crossref] [PubMed]
  18. Z. Y. Luo, F. L. Peng, H. W. Chen, M. G. Hu, J. Li, Z. W. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
    [Crossref]
  19. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [Crossref]
  20. Y. H. Lin, J. M. Yang, Y. R. Lin, S. C. Jeng, and C. C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
    [Crossref] [PubMed]

2015 (3)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

Z. Y. Luo, F. L. Peng, H. W. Chen, M. G. Hu, J. Li, Z. W. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

2014 (3)

2013 (2)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

2010 (3)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

2008 (1)

2007 (2)

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2003 (1)

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

1960 (1)

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295 (1960).
[Crossref] [PubMed]

An, Z. W.

Ayras, P.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Bos, P. J.

Brac-de-la-Perriere, V.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

Bryant, D.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Campbell, F. W.

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295 (1960).
[Crossref] [PubMed]

Chang, C. M.

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Chen, H. S.

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

Chen, H. W.

Cheng, D.

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Chigrinov, V. G.

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Fan, Y. H.

Fox, D. W.

Honkanen, S.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Hu, M. G.

Hua, H.

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Jeng, S. C.

Kress, B.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Li, G. Q.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Li, J.

Li, L.

Liao, C. C.

Lin, H. C.

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Lin, Y. H.

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, J. M. Yang, Y. R. Lin, S. C. Jeng, and C. C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
[Crossref] [PubMed]

Lin, Y. R.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Luo, Z. Y.

Mathine, D. L.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Peng, F. L.

Peyghambarian, N.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Ren, H.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Saeedi, E.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Srivastava, A. K.

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Sun, J. T.

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Valley, P.

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Van Heugten, T.

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Wang, Y. J.

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

H. S. Chen, Y. H. Lin, A. K. Srivastava, V. G. Chigrinov, C. M. Chang, and Y. J. Wang, “A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element,” Opt. Express 22(11), 13138–13145 (2014).
[Crossref] [PubMed]

Westheimer, G.

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295 (1960).
[Crossref] [PubMed]

Wu, B.

Wu, S. T.

Yamaguchi, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Yang, J. M.

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Q. Li, P. Valley, P. Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

H. S. Chen, Y. H. Lin, C. M. Chang, Y. J. Wang, A. K. Srivastava, J. T. Sun, and V. G. Chigrinov, “A polarized bifocal switch based on liquid crystals operated electrically and optically,” J. Appl. Phys. 117(4), 044502 (2015).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Physiol. (1)

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151(2), 285–295 (1960).
[Crossref] [PubMed]

Jpn, J. Appl. Phys. (1)

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn, J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Proc. SPIE (2)

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Other (2)

J. P. Rolland and H. Hua, “Head-Mounted Display Systems,” in Encyclopedia of Optical Engineering, R. B. Johnson and R. G. Driggers, eds. (Taylor and Francis, 2005), pp. 1–13.

G. M. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Proposed optical system for augmented reality. PBS: polarizing beam splitter. BS: beam splitter. LCoS: liquid-crystal-on-silicon. (a) The virtual image written on the LCoS panel is projected at infinity as the LC lens power is zero. (b) The virtual image, written on the LCoS panel, is projected beside the real object because the LC lens is a negative lens. (c) The projected image is a real image near the observer because the LC lens is a positive lens. (d) LC lens structure (d) without an applied voltage, or when the LC lens is (e) a negative lens (V1 < V2) or (f) a positive lens(V1 > V2).
Fig. 2
Fig. 2 LC lens power as a function of applied voltage. The LC lens with a 10 mm aperture is a positive lens (red solid dots) at a fixed V1 of 70 Vrms at a frequency f = 17.5 kHz, and a negative lens (blue solid triangles) at a fixed V2 of 50 Vrms at f = 5.2 kHz. The LC lens with an effective 4 mm aperture is a positive lens (red hollow circles) at a fixed V1 of 70Vrms at f = 17.5 kHz, but is a negative lens (blue hollow triangles) at a fixed V2 of 50 Vrms at f = 5.2 kHz.
Fig. 3
Fig. 3 Projected virtual images recorded by the camera for an LC lens power of −1.32 D (V1 = 0, V2 = 50 Vrms. The camera was focused (a) 42 cm or (b) 360 cm away from the BS. (c) Contrast ratio versus distance to the projected image for different LC lens powers, adjusted via the voltage pair (V1, V2).
Fig. 4
Fig. 4 Image distance as a function of the LC lens power. The solid lines and the hollow circles represent the calculated and experimental results, respectively. Calculations assumed an effective object distance peff of 30.79 mm.
Fig. 5
Fig. 5 Image performance of the AR system. The camera captures two objects, located (a) 360 cm (tall building) and (b) 42 cm (short building) away, by adjusting the camera lens power with the LCoS panel turned off. (c) When the LCoS panel is turned on and displays the text “Taiwan101” and the LC lens power is −1.32 D with V1 = 0 and V2 = 50 Vrms, the camera captures the more distant object (360 cm away) clearly, while the projected image of “Taiwan101” is blurred. (d) Both the object (tall building) and the virtual image (“Taiwan101”) become clear as the LC lens power changes to 0.1 D by applying V1 = V2 = 50 Vrms. (e) When the LCoS panel, displaying “NCTU”, is turned on and the LC lens power is 0.1 D (V1 = V2 = 50 Vrms, the camera is readjusted so as to capture the object at 42 cm, but “NCTU” is blurred. (f) Both the object (short building) and the virtual image (“NCTU”) then become clear as the LC lens power becomes −1.32 D (V1 = 0, V2 = 50 Vrms).
Fig. 6
Fig. 6 The projected image is real when the LC lens is a positive lens. (a) The LC lens power is 1.72 D when V1 = 70 Vrms, V2 = 10 Vrms, and (b) 0.03 D when V1 = V2 = 70 Vrms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 p eff + 1 q eff (V) =2 P LC (V)+ P mirror ,
q eff (V)= 1 2 P LC (V)+ P mirror 1 p eff .
P LC (V)= 4δn(V)d r 2 ,

Metrics