Abstract

We present a simple hyperspectral Stimulated Raman Scattering (SRS) microscopy method based on spectral focusing of chirped femtosecond pulses, combined with amplitude (AM) and polarization (PM) modulation. This approach permits the imaging of low concentration components with reduced background signals, combined with good hyperspectral resolution and rapid spectral scanning. We demonstrate, using PM-SRS in a Raman loss configuration, the spectrally resolved detection of deuterated dimethyl sulfoxide (DMSO-d6) at concentrations as low as 0.039 % (5.5 mM). In general, background signals due to cross-phase modulation (XPM), two-photon absorption (TPA) and thermal lensing (TL) can reduce the contrast in SRS microscopy. We show that the nonresonant background signal contributing to the SRS signal is, in our case, largely due to XPM. Polarization modulation of the Stokes beam eliminates the nonresonant XPM background, yielding high quality hyperspectral scans at low analyte concentration. The flexibility of our combined AM-PM approach, together with the use of variable modulation frequency and lock-in phase, should allow for optimization of SRS imaging in more complex samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiplex Raman induced Kerr effect microscopy

Brandon R. Bachler, Martin E. Fermann, and Jennifer P. Ogilvie
Opt. Express 20(2) 835-844 (2012)

Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper

Delong Zhang, Mikhail N. Slipchenko, Daniel E. Leaird, Andrew M. Weiner, and Ji-Xin Cheng
Opt. Express 21(11) 13864-13874 (2013)

Single-beam phase-modulated stimulated Raman scattering microscopy with spectrally focused detection

Terumasa Ito, Yuki Obara, and Kazuhiko Misawa
J. Opt. Soc. Am. B 34(5) 1004-1015 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  2. E. O. Potma and X. S. Xie, “CARS microscopy for biology and medicine,” Opt. Photonics News 15, 40 (2004).
    [Crossref]
  3. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [Crossref]
  4. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
    [Crossref]
  5. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  6. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
    [Crossref]
  7. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
    [Crossref]
  8. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
    [Crossref]
  9. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984 (2009).
    [Crossref] [PubMed]
  10. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95, 081109 (2009).
    [Crossref]
  11. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1, 1347 (2010).
    [Crossref]
  12. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
    [Crossref] [PubMed]
  13. B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
    [Crossref] [PubMed]
  14. R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Advances in Spectroscopy) (Wiley, 1988).
  15. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241 (2006).
    [Crossref] [PubMed]
  16. H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
    [Crossref] [PubMed]
  17. A. M. Barlow, K. Popov, M. Andreana, D. J. Moffatt, A. Ridsdale, A. D. Slepkov, J. L. Harden, L. Ramunno, and A. Stolow, “Spatial-spectral coupling in coherent anti-stokes Raman scattering microscopy,” Opt. Express 21, 15298 (2013).
    [Crossref] [PubMed]
  18. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37, 473–475 (2012).
    [Crossref] [PubMed]
  19. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS microscopy: effect of the Gouy phase shift,” Opt. Express 19, 5902 (2011).
    [Crossref] [PubMed]
  20. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
    [Crossref] [PubMed]
  21. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
    [Crossref] [PubMed]
  22. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
    [Crossref]
  23. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref] [PubMed]
  24. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009).
    [Crossref]
  25. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651 (2009).
    [Crossref] [PubMed]
  26. D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
    [Crossref] [PubMed]
  27. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32, 2641 (2007).
    [Crossref] [PubMed]
  28. P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
    [Crossref] [PubMed]
  29. K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
    [Crossref]
  30. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
    [Crossref]
  31. S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
    [Crossref]
  32. S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
    [Crossref] [PubMed]
  33. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
    [Crossref]
  34. C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
    [Crossref] [PubMed]
  35. F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
    [Crossref]
  36. W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
    [Crossref]
  37. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).
  38. R. W. Boyd, Nonlinear Optics (Academic, 2008), 3.
  39. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, 1982).
  40. A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
    [Crossref]
  41. B. Schrader and W. Meier, Raman/IR Atlas of Organic Compounds (Verlag Chemie GmbH, 1976).
  42. J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
    [Crossref]

2015 (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

2014 (2)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37, 473–475 (2012).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

2011 (5)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
[Crossref] [PubMed]

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS microscopy: effect of the Gouy phase shift,” Opt. Express 19, 5902 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

2010 (2)

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1, 1347 (2010).
[Crossref]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (3)

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

2007 (2)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32, 2641 (2007).
[Crossref] [PubMed]

2006 (4)

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241 (2006).
[Crossref] [PubMed]

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

2004 (3)

E. O. Potma and X. S. Xie, “CARS microscopy for biology and medicine,” Opt. Photonics News 15, 40 (2004).
[Crossref]

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

2002 (1)

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

2001 (1)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

2000 (2)

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

1999 (1)

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

1987 (1)

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Andreana, M.

Andresen, E. R.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
[Crossref] [PubMed]

Barlow, A. M.

Begley, D.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Berciaud, S.

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Berg, L.-E.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Berto, P.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Blab, G.

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Bonn, M.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
[Crossref] [PubMed]

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Borri, P.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95, 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3.

Brasselet, S.

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Brustlein, S.

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Chen, B. J.

Chen, B.-C.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
[Crossref] [PubMed]

Cheng, J.-X.

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
[Crossref] [PubMed]

Clark, R. J. H.

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Advances in Spectroscopy) (Wiley, 1988).

Cognet, L.

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Dake, F.

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

De Santis, A.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Dhollande, C.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Ekvall, K.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Evans, C. L.

Frattini, R.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Frost, R. L.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

Fu, D.

Fukui, K.

Ganikhanov, F.

Garrett, N. L.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Harden, J. L.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Hester, R. E.

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Advances in Spectroscopy) (Wiley, 1988).

Hibara, A.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Hiki, S.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

Holtom, G.

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Hostein, R.

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Itoh, K.

Jia, Y.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Kitamori, T.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Kloprogge, J. Theo

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009).
[Crossref]

Kristof, J.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Lalatsa, A.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Langbein, W.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95, 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[Crossref]

Lee, Y. J.

Levenson, M. D.

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, 1982).

Lim, S.-H.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
[Crossref] [PubMed]

Liu, Y.

Lounis, B.

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Lozano, M. V.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Martens, W. N.

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

Matthews, T. E.

Mawatari, K.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

Mazza, M.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Mazzacurati, V.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Meier, W.

B. Schrader and W. Meier, Raman/IR Atlas of Organic Compounds (Verlag Chemie GmbH, 1976).

Mialocq, J.-C.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Mihoreanu, L.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Min, W.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

Moger, J.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Muller, M.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
[Crossref] [PubMed]

Munhoz, F.

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009).
[Crossref]

Nardone, M.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Naskrecki, R.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Ozeki, Y.

Pegoraro, A. F.

Pezacki, J. P.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Pommeret, S.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Popov, K.

Popov, K. I.

Potma, E. O.

Ramunno, L.

Ricci, M.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Ridsdale, A.

Rigneault, H.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
[Crossref] [PubMed]

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

Rinia, H. A.

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
[Crossref] [PubMed]

Rocha-Mendoza, I.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95, 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[Crossref]

Roeffaers, M. B. J.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

Ruocco, G.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Saar, B. G.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

Sampoli, M.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Schatzlein, A.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Schrader, B.

B. Schrader and W. Meier, Raman/IR Atlas of Organic Compounds (Verlag Chemie GmbH, 1976).

Slepkov, A. D.

Slipchenko, M. N.

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
[Crossref] [PubMed]

Stolow, A.

Sung, J.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
[Crossref] [PubMed]

Tokeshi, M.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Uchegbu, I.

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

van der Meulen, P.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Warren, W. S.

Wu, X.

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

Xie, X.

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Xie, X. S.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241 (2006).
[Crossref] [PubMed]

E. O. Potma and X. S. Xie, “CARS microscopy for biology and medicine,” Opt. Photonics News 15, 40 (2004).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Xie, X. Sunney

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Ye, T.

Yurtserver, G.

Zhang, D.

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
[Crossref] [PubMed]

Zhang, X.

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Zumbusch, A.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Anal. Chem. (1)

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem. 78, 2859–2863 (2006).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Appl. Phys. Lett. (3)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[Crossref]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95, 081109 (2009).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys. 87, 2340 (2000).
[Crossref]

J. Biomed. Opt. (1)

B.-C. Chen, J. Sung, X. Wu, and S.-H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-stokes Raman scattering,” J. Biomed. Opt. 16, 021112 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

J. Phys. Chem. B (4)

H. A. Rinia, M. Bonn, and M. Muller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006).
[Crossref] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114, 16871–16880 (2010).
[Crossref] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (e-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J. Phys. Chem. Lett. 2, 1248–1253 (2011).
[Crossref] [PubMed]

J. Raman Spectrosc. (3)

F. Munhoz, S. Brustlein, R. Hostein, P. Berto, S. Brasselet, and H. Rigneault, “Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids,” J. Raman Spectrosc. 43, 419–424 (2012).
[Crossref]

W. N. Martens, R. L. Frost, J. Kristof, and J. Theo Kloprogge, “Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K,” J. Raman Spectrosc. 33, 84–91 (2002).
[Crossref]

J. Moger, N. L. Garrett, D. Begley, L. Mihoreanu, A. Lalatsa, M. V. Lozano, M. Mazza, A. Schatzlein, and I. Uchegbu, “Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy,” J. Raman Spectrosc. 43, 668–674 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Mol. Phys. (1)

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions: I. study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[Crossref]

Nat. Photonics (2)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 033026 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Photonics News (1)

E. O. Potma and X. S. Xie, “CARS microscopy for biology and medicine,” Opt. Photonics News 15, 40 (2004).
[Crossref]

Phys. Rev. Lett. (3)

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112, 053905 (2014).
[Crossref] [PubMed]

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Other (5)

B. Schrader and W. Meier, Raman/IR Atlas of Organic Compounds (Verlag Chemie GmbH, 1976).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3.

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, 1982).

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Advances in Spectroscopy) (Wiley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of AM-PM SRS microscopy. (a) Energy level diagram for SRS and CARS microscopy. (b) Experimental setup for AM-SRS and PM-SRS: (BS) beam splitter, (D) dichroic mirror, (G) galvanometers mirrors, (S) sample, (O) microscope objective, (C) condenser, (P) photodiode, (F) filters, (PMT) photomultiplier tube, (Sh) shutter and (λ/2) half-wave plate. (c) Stimulated Raman Loss (SRL) scheme used in the present experiment. The analogous Stimulated Raman Gain (SRG) scheme may be readily implemented by applying the AM or PM modulation to the pump beam. (d) A depiction of the AM and PM SRS microscopy scheme. In AM-SRS, the intensity of the Stokes beam is modulated while in PM-SRS, the state of the linear polarization is modulated. A key aspect of the PM scheme is that the total power (Pump+Stokes) transmitted through the sample may be chosen to be invariant, minimizing thermal lensing effects. Importantly, PM-SRS can specifically reduce the XPM background contribution to the signal.

Fig. 2
Fig. 2

(a) Amplitude-modulated SRS (AM-SRS) microscopy spectrum and (b) raw CARS spectrum at a concentration of 10 % (1.4 M) DMSO-d6 in water. (c) AM-SRS and (d) raw CARS spectrum at 1.25 % (0.18 M) DMSO-d6 concentration in water. In all cases, the pump and Stokes power were IP = 71 mW and IS = 146 mW. It can be seen that, at low concentration, the unprocessed CARS signal is dominated by the non-resonant background. However, in panel (c) it can be seen that a background signal also emerges for AM-SRS microscopy. For a discussion, see the text.

Fig. 3
Fig. 3

(a) AM-SRS spectrum of 0,6 % (88 mM) DMSO-d6, showing a nonresonant signal. Here Ip = 61 mW and IS = 95 mW. (b) AM-SRS spectrum of pure water also reveals a very similar nonresonant background signal. Here Ip = 56 mW and IS = 151 mW. The upper x axis denotes the time delay difference between the pump and the Stokes pulses. With pure water ruling out two-photon absorption, this leaves two possible candidates for the background signal: thermal lensing (TL) and cross-phase modulation (XPM).

Fig. 4
Fig. 4

Spectral scans of 0.6 % (88 mM) DMSO-d6 solution using (a) AM-SRS and (b) PM-SRS. The laser powers were Ip = 61 mW, I S = 95 m W and I S = 174 m W. It can be seen that the PM effectively removes the background due to XPM.

Fig. 5
Fig. 5

Log-log plots of AM- and PM-SRS signals as a function of the DMSO-d6 concentrations, ranging between 0.039 % (5.5 mM) and 10 % (1.4 M). The laser powers were the same for both the AM and PM SRS measurements: Ip = 64 mW, I S = 106 m W and I S = 178 m W. In the inset, we show the raw SRS spectra at the lowest DMSO-d6 concentration recorded, 0.039 % (5.5 mM).

Fig. 6
Fig. 6

Hyperspectral SRS imaging at low concentration. (a) AM-SRS and (b) PM-SRS hyperspectral images of 0.3 % (44 mM) DMSO-d6 droplets in an octadecene medium. The spectra associated with the droplet shown by the arrow are given in panel (c) for AM-SRS and (d) for PM-SRS. In both schemes, Ip = 57 mW, I S = 110 m W and I S = 176 m W. It can be seen that, although the image intensity contrast appears similar in both AM and PM schemes, the spectral identification (Raman peak visibility) of the target molecule is much clearer in the PM scheme. The images size are 270 × 270 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I X P M δ n p a = 3 χ X P M ( 3 ) I S a n p n S ε 0 c
χ X P M ( 3 ) = χ ( 3 ) ( ω p , ω S , ω S , ω p ) .
Δ I A M X P M Δ I P M X P M = δ n p δ n p δ n p = χ 1111 ( 3 ) I S χ 1111 ( 3 ) I S χ 1221 ( 3 ) I S = I S I S ρ I S

Metrics