Abstract

We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power, high repetition-rate, ultrafast fibre laser based source of DUV radiation at 266 nm

A. Srinivasa Rao, N. Apurv Chaitanya, and G. K. Samanta
OSA Continuum 2(1) 99-106 (2019)

Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using ?-BaB2O4

K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota
Opt. Lett. 23(3) 195-197 (1998)

References

  • View by:
  • |
  • |
  • |

  1. S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
    [Crossref]
  2. Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
    [Crossref]
  3. L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
    [Crossref]
  4. M. Ebrahim-Zadeh and S. C. Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 7600519 (2014).
  5. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  6. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
    [Crossref]
  7. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “>3MW peak power at 266 nm using Nd:YAG/Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907–913 (2012).
    [Crossref]
  8. S. Chaitanya Kumar, J. Canals Casals, E. Sanchez Bautista, K. Devi, and M. Ebrahim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015).
    [Crossref] [PubMed]
  9. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
    [Crossref]
  10. M. Bradler and E. Riedle, “Sub-20 fs μJ-energy pulses tunable down to the near-UV from a 1 MHz Yb-fiber laser system,” Opt. Lett. 39(9), 2588–2591 (2014).
    [Crossref] [PubMed]
  11. J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
    [Crossref] [PubMed]
  12. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  13. S. Chaitanya Kumar, E. Sanchez Bautista, and M. Ebrahim-Zadeh, “Stable, high-power, Yb-fiber-based, picosecond ultraviolet generation at 355 nm using BiB3O6.,” Opt. Lett. 40(3), 403–406 (2015).
    [Crossref] [PubMed]
  14. D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
    [Crossref]
  15. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
    [Crossref]
  16. C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11(5), 774–785 (1994).
    [Crossref]
  17. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  18. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
    [Crossref] [PubMed]

2015 (2)

2014 (2)

M. Bradler and E. Riedle, “Sub-20 fs μJ-energy pulses tunable down to the near-UV from a 1 MHz Yb-fiber laser system,” Opt. Lett. 39(9), 2588–2591 (2014).
[Crossref] [PubMed]

M. Ebrahim-Zadeh and S. C. Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 7600519 (2014).

2013 (2)

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

2010 (1)

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

2004 (1)

Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
[Crossref]

2001 (1)

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

2000 (1)

D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
[Crossref]

1994 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Bhandari, R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Bradler, M.

Buschmann, V.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Cadatal-Raduban, M.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Canals Casals, J.

Chaitanya Kumar, S.

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Demmler, S.

Dergachev, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Devi, K.

Dragomir, A.

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

Ebrahim-Zadeh, M.

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Erdmann, R.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Furukawa, Y.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Hädrich, S.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Henesian, M. A.

Isaenko, L. I.

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Koberling, F.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Kong, Y.

D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
[Crossref]

König, M.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Kumar, S. C.

M. Ebrahim-Zadeh and S. C. Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 7600519 (2014).

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

Lauritsen, C.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Li, Q.

Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
[Crossref]

Limpert, J.

Marshall, C. D.

McInerney, J. G.

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

Miyamoto, A.

Moulton, P. F.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Nikogosyan, D. N.

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

Orthaus, S.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Ortmann, U.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Osada, A.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Payne, S. A.

Peschel, T.

Powell, H. T.

Riedle, E.

Rothhardt, J.

Ruckstuhl, T.

Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Samanta, G. K.

Sanchez Bautista, E.

Sarukura, N.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Schönau, T.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Seeger, S.

Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shimizu, T.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Speth, J. A.

Tago, T.

Taira, T.

Takahashi, M.

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Tannert, S.

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Tünnermann, A.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

Zhang, D.

D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
[Crossref]

Zhang, J.

D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ebrahim-Zadeh and S. C. Kumar, “Yb-Fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet,” IEEE J. Sel. Top. Quantum Electron. 20, 7600519 (2014).

J. Appl. Phys. (2)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62(5), 1968–1983 (1987).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Cryst. Growth (1)

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Improved fourth harmonic generation in β-BaB2O4 by tight elliptical focusing perpendicular to walk-off plane,” J. Cryst. Growth 318(1), 606–609 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Q. Li, T. Ruckstuhl, and S. Seeger, “Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules,” J. Phys. Chem. B 108(24), 8324–8329 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys. 49(8), 080211 (2010).
[Crossref]

Opt. Commun. (2)

L. I. Isaenko, A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, “Anisotropy of two-photon absorption in BBO at 264 nm,” Opt. Commun. 198(4-6), 433–438 (2001).
[Crossref]

D. Zhang, Y. Kong, and J. Zhang, “Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge,” Opt. Commun. 184(5-6), 485–491 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optik Photonik (1)

S. Orthaus, M. König, T. Schönau, V. Buschmann, S. Tannert, C. Lauritsen, F. Koberling, U. Ortmann, and R. Erdmann, “Crossing the limit towards deep UV,” Optik Photonik 8(1), 33–36 (2013).
[Crossref]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Variation of the FH power and FHG efficiency as a function of the green power using (a) 5-mm-long and (b) 10-mm-long BBO crystals. Inset: Variation of the FH power as a function of the square of the green power.
Fig. 2
Fig. 2 Variation of the FH power and FHG efficiency as a function of the green power chopped at 5.3% duty cycle. Inset: Variation of the FH power as a function of the square of the chopped green power.
Fig. 3
Fig. 3 (a) FH power and efficiency scaling as a function of the input green power using two 10-mm-long BBO crystals in walk-off compensation configuration. (b) Simultaneously measured SH power after the first crystal (SC) and second walk-off compensation crystal (WC), Inset: variation of FH power enhancement and enhancement factor as a function of input green power.
Fig. 4
Fig. 4 (a-d) Experimentally measured, and (e,f) theoretically calculated angular acceptance bandwidth for 5-mm-long and 10-mm-long BBO crystals under two different focusing conditions for FHG into the UV at 266 nm.
Fig. 5
Fig. 5 (a). Experimentally measured, and (b) theoretically calculated temperature acceptance bandwidth of 10-mm-long BBO crystal for FHG into the UV at 266 nm.
Fig. 6
Fig. 6 Variation of the temperature measured directly at the center of the BBO crystal at room temperature, due to absorption at the green and UV wavelengths. Inset: Temperature rise due to (a) green, and (b) UV, independently.
Fig. 7
Fig. 7 Variation of the BBO transmission at 266 nm as a function of the intensity at (a) 22°C, (b) 100°C, and (c) 200°C. Solid circles and solid lines correspond to experimental data and theory, respectively. (d) Variation of the normalized color center density as a function of UV intensity at different temperatures.
Fig. 8
Fig. 8 Long-term power stability of the generated UV output using (a) 5-mm-long, and (b) 10-mm-long BBO.
Fig. 9
Fig. 9 UV beam pointing stability measurements performed at a temperature of 200°C for (a) UV power = 0.5 W, wSH~19 µm, (b) UV power = 0.5 W, wSH~55 µm, (c) UV power = 1.2 W, wSH~19 µm, and (d) UV power = 1.2 W, wSH~55 µm.
Fig. 10
Fig. 10 Spatial beam profile of the (a) generated, and (b) circularized UV radiation at 266 nm in BBO.
Fig. 11
Fig. 11 (a) Spectrum centered at 266 nm, and (b) pulse train of the generated UV radiation at 266 nm.

Tables (1)

Tables Icon

Table 1 Phase-matching properties of some prominent UV nonlinear crystals.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dN(z,t) dt = β I 4ω 2 (z,t) 8ω
d I 4ω (z,t) dz ={ α +N(z,t) σ 4ω } I 4ω (z,t)β I 4ω 2 (z,t)

Metrics