Abstract

A novel approach to adaptively control the beam profile in a few-mode fiber is experimentally demonstrated. We stress the fiber through an electric-controlled polarization controller, whose driven voltage depends on the current and target modal content difference obtained with the real-time mode decomposition. We have achieved selective excitations of LP01 and LP11 modes, as well as significant improvement of the beam quality factor, which may play crucial roles for high-power fiber lasers, fiber based telecommunication systems and other fundamental researches and applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time mode decomposition for few-mode fiber based on numerical method

Liangjin Huang, Shaofeng Guo, Jinyong Leng, Haibin Lü, Pu Zhou, and Xiang’ai Cheng
Opt. Express 23(4) 4620-4629 (2015)

Adaptive control of waveguide modes in a two-mode-fiber

Peng Lu, Matthew Shipton, Anbo Wang, Shay Soker, and Yong Xu
Opt. Express 22(3) 2955-2964 (2014)

Learning to decompose the modes in few-mode fibers with deep convolutional neural network

Yi An, Liangjin Huang, Jun Li, Jinyong Leng, Lijia Yang, and Pu Zhou
Opt. Express 27(7) 10127-10137 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
    [Crossref]
  4. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31(7), 1023–1032 (2013).
    [Crossref]
  5. Y. Jung, Z. Li, N. H. L. Wong, J. Daniel, J. K. Sahu, S. Alam, and D. J. Richardson, “Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu3D.4.
    [Crossref]
  6. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
    [Crossref] [PubMed]
  7. R. Brüning, S. Ngcobo, M. Duparré, and A. Forbes, “Direct fiber excitation with a digitally controlled solid state laser source,” Opt. Lett. 40(3), 435–438 (2015).
    [Crossref] [PubMed]
  8. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [Crossref] [PubMed]
  9. J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
    [Crossref] [PubMed]
  10. W. Mohammed and X. Gu, “Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications,” Appl. Opt. 49(28), 5297–5301 (2010).
    [Crossref] [PubMed]
  11. P. Lu, M. Shipton, A. Wang, S. Soker, and Y. Xu, “Adaptive control of waveguide modes in a two-mode-fiber,” Opt. Express 22(3), 2955–2964 (2014).
    [Crossref] [PubMed]
  12. P. Lu, M. Shipton, A. Wang, and Y. Xu, “Adaptive control of waveguide modes using a directional coupler,” Opt. Express 22(17), 20000–20007 (2014).
    [Crossref] [PubMed]
  13. P. Lu, A. Wang, S. Soker, and Y. Xu, “Adaptive mode control based on a fiber Bragg grating,” Opt. Lett. 40(15), 3488–3491 (2015).
    [Crossref] [PubMed]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).
  15. S. Yao, “Polarization in fiber systems: squeezing out more bandwidth,” in The Photonics Handbook (Laurin Publishing, 2003).
  16. L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
    [Crossref] [PubMed]
  17. C. Schulze, S. Ngcobo, M. Duparré, and A. Forbes, “Modal decomposition without a priori scale information,” Opt. Express 20(25), 27866–27873 (2012).
    [Crossref] [PubMed]
  18. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  19. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
    [Crossref] [PubMed]
  20. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
    [Crossref] [PubMed]
  21. R. Brüning, P. Gelszinnis, C. Schulze, D. Flamm, and M. Duparré, “Comparative analysis of numerical methods for the mode analysis of laser beams,” Appl. Opt. 52(32), 7769–7777 (2013).
    [Crossref] [PubMed]
  22. F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref] [PubMed]
  23. H. Lü, P. Zhou, X. Wang, and Z. Jiang, “Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm,” Appl. Opt. 52(12), 2905–2908 (2013).
    [Crossref] [PubMed]
  24. L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
    [Crossref]
  25. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, “Fast M2 measurement for fiber beams based on modal analysis,” Appl. Opt. 51(7), 987–993 (2012).
    [Crossref] [PubMed]
  26. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20(18), 19714–19725 (2012).
    [Crossref] [PubMed]
  27. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol. 24(3), 1350–1355 (2006).
    [Crossref]
  28. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15(10), 2745–2758 (1998).
    [Crossref]
  29. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  30. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  31. D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
    [Crossref] [PubMed]
  32. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [Crossref] [PubMed]

2015 (4)

2014 (2)

2013 (7)

2012 (3)

2011 (4)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

2000 (1)

1998 (1)

Abouraddy, A. F.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

Audouard, E.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Baskiotis, C.

Bolle, C. A.

Brüning, R.

Burger, L.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Chan, J. S. P.

Cheng, X.

L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
[Crossref]

L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
[Crossref] [PubMed]

Clarkson, W. A.

Daniel, J. M. O.

Duparré, M.

Essiambre, R. J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fink, Y.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

Flamm, D.

Forbes, A.

Gaida, C.

Gelszinnis, P.

Ghalmi, S.

Gnauck, A. H.

Goldberg, L.

Gu, X.

Guo, S.

L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
[Crossref]

L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
[Crossref] [PubMed]

Huang, L.

L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
[Crossref] [PubMed]

L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
[Crossref]

Huignard, J. P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Huot, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Ibsen, M.

Jain, D.

Jansen, F.

Jauregui, C.

Jiang, Z.

Joannopoulos, J. D.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

Kaiser, T.

Kim, J. W.

Kliner, D. A. V.

Koplow, J. P.

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Leng, J.

L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
[Crossref]

L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
[Crossref] [PubMed]

Limpert, J.

Lingle, R.

Litvin, I.

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Lu, P.

Lü, H.

Mansuripur, M.

McCurdy, A.

Mohammed, W.

Naidoo, D.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ngcobo, S.

Nicholson, J. W.

Nilsson, J.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Otto, H. J.

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Peckham, D. W.

Polynkin, P.

Ramachandran, S.

Randel, S.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ryf, R.

Sahu, J. K.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Schmidt, O. A.

Schröter, S.

Schulze, C.

Shapira, O.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

Shipton, M.

Sierra, A.

Sivokon, V. P.

Soker, S.

Stutzki, F.

Tünnermann, A.

Vorontsov, M. A.

Wang, A.

Wang, X.

Wielandy, S.

Winzer, P. J.

Xu, Y.

Yablon, A. D.

Yoda, H.

Zhou, P.

Appl. Opt. (4)

IEEE Photonics Technol. Lett. (1)

L. Huang, H. Lü, P. Zhou, J. Leng, S. Guo, and X. Cheng, “Modal analysis of fiber laser beam by using stochastic parallel gradient descent algorithm,” IEEE Photonics Technol. Lett. 27(21), 2280–2283 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4, 2289 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (12)

J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
[Crossref] [PubMed]

J. M. O. Daniel and W. A. Clarkson, “Rapid, electronically controllable transverse mode selection in a multimode fiber laser,” Opt. Express 21(24), 29442–29448 (2013).
[Crossref] [PubMed]

P. Lu, M. Shipton, A. Wang, S. Soker, and Y. Xu, “Adaptive control of waveguide modes in a two-mode-fiber,” Opt. Express 22(3), 2955–2964 (2014).
[Crossref] [PubMed]

P. Lu, M. Shipton, A. Wang, and Y. Xu, “Adaptive control of waveguide modes using a directional coupler,” Opt. Express 22(17), 20000–20007 (2014).
[Crossref] [PubMed]

L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, and X. Cheng, “Real-time mode decomposition for few-mode fiber based on numerical method,” Opt. Express 23(4), 4620–4629 (2015).
[Crossref] [PubMed]

C. Schulze, S. Ngcobo, M. Duparré, and A. Forbes, “Modal decomposition without a priori scale information,” Opt. Express 20(25), 27866–27873 (2012).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20(18), 19714–19725 (2012).
[Crossref] [PubMed]

D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with multi-trench rod-type fibers,” Opt. Express 21(2), 1448–1455 (2013).
[Crossref] [PubMed]

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, “Direct ultrafast laser micro-structuring of materials using programmable beam shaping,” Opt. Lasers Eng. 45(6), 737–741 (2007).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[Crossref] [PubMed]

Science (1)

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).

S. Yao, “Polarization in fiber systems: squeezing out more bandwidth,” in The Photonics Handbook (Laurin Publishing, 2003).

Y. Jung, Z. Li, N. H. L. Wong, J. Daniel, J. K. Sahu, S. Alam, and D. J. Richardson, “Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Tu3D.4.
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (561 KB)      Visualization 1 shows the video of the process optimizing the beam to almost pure LP01.
» Visualization 2: MOV (540 KB)      Visualization 2 shows the process optimizing the initial beam to almost pure LP11e.
» Visualization 3: MOV (612 KB)      Visualization 3 shows the process optimizing the initial beam to the beam with M2~1.02.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental set-up of adaptive mode control system (SMF, single-mode fiber; PC, polarization controller; DAQ, data acquisition device; L, lens; HWP, half-wave plate; PBS, polarization beam splitter; nPBS, non-polarization beam splitter; NDF, neutral density filter;f1/f2, focal length of L1/L2;). The SMF-28 fiber is FMF at 1073 nm and the dashed lines represent electrical connections.
Fig. 2
Fig. 2 The evolution of the LP01 content and the control voltage during the experimental process. The insets show the initial beam and the optimized beam (at 50th step) respectively. Visualization 1 shows the video of the process optimizing the beam to almost pure LP01.
Fig. 3
Fig. 3 Beam profiles “before” and “after” optimization of four different optimization processes and the corresponding LP01 weight.
Fig. 4
Fig. 4 The evolution of the LP11o content and the corresponding control voltage during the process of selective excitation of the LP11o mode. The insets show the initial beam and the optimized beam (at 40th step) respectively. Visualization 2 shows the process optimizing the initial beam to almost pure LP11o.
Fig. 5
Fig. 5 The evolution of the M2 and the corresponding control voltage during the process of minimizing M2. The insets show the initial beam and the optimized beam (at 30th step) respectively. Visualization 3 shows the process of optimizing the initial beam to the beam with M2~1.02.

Tables (1)

Tables Icon

Table 1 Initial and optimized M2 with the corresponding mode contents of five examples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U(r,φ)= n=1 N ρ n e i θ n ψ n (r,φ)
J=| Δ I re (r,φ)Δ I me (r,φ)rdrdφ Δ I re 2 (r,φ)rdrdφ Δ I me 2 (r,φ)rdrdφ |

Metrics