Abstract

We developed an optical method to visualize the three-dimensional distribution of magnetic field strength around magnetic microstructures. We show that the two-photon-excited fluorescence of a chained donor-bridge-acceptor compound, phenanthrene-(CH2)12-O-(CH2)2-N,N-dimethylaniline, is sensitive to ambient magnetic field strength. A test structure is immersed in a solution of the magneto-fluorescent indicator and a custom two-photon microscope maps the fluorescence of this compound. The decay kinetics of the electronic excited state provide a measure of magnetic field that is insensitive to photobleaching, indicator concentration, or local variations in optical excitation or collection efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical imaging through scattering media via magnetically modulated fluorescence

Nan Yang and Adam E. Cohen
Opt. Express 18(25) 25461-25467 (2010)

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH

Mohammad A. Yaseen, Sava Sakadžić, Weicheng Wu, Wolfgang Becker, Karl A. Kasischke, and David A. Boas
Biomed. Opt. Express 4(2) 307-321 (2013)

3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

Heejin Choi, Dimitrios S. Tzeranis, Jae Won Cha, Philippe Clémenceau, Sander J. G. de Jong, Lambertus K. van Geest, Joong Ho Moon, Ioannis V. Yannas, and Peter T. C. So
Opt. Express 20(24) 26219-26235 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
    [Crossref] [PubMed]
  2. A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
    [Crossref] [PubMed]
  3. B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
    [Crossref] [PubMed]
  4. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
    [Crossref] [PubMed]
  5. V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
    [Crossref]
  6. R. Blakemore, “Magnetotactic bacteria,” Science 190(4212), 377–379 (1975).
    [Crossref] [PubMed]
  7. J. L. Kirschvink and J. L. Gould, “Biogenic magnetite as a basis for magnetic field detection in animals,” Biosystems 13(3), 181–201 (1981).
    [Crossref] [PubMed]
  8. J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
    [Crossref] [PubMed]
  9. U. Hartmann, “A theoretical analysis of Bitter-pattern evolution,” J. Magn. Magn. Mater. 68(3), 298–304 (1987).
    [Crossref]
  10. D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
    [Crossref]
  11. M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
    [Crossref] [PubMed]
  12. Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 A Resolution,” Appl. Phys. Lett. 50(20), 1455 (1987).
    [Crossref]
  13. J. R. Kirtley and J. P. Wikswo., “Scanning Squid Microscopy,” Annu. Rev. Mater. Sci. 29(1), 117–148 (1999).
    [Crossref]
  14. A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
    [Crossref]
  15. L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
    [Crossref]
  16. H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
    [Crossref] [PubMed]
  17. C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
    [Crossref] [PubMed]
  18. J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
    [Crossref] [PubMed]
  19. U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
    [Crossref]
  20. K. Schulten, “Magnetic field effects in chemistry and biology,” Adv. Solid State Phys. 22, 61–83 (1982).
    [Crossref]
  21. J. A. Jones and P. J. Hore, “Spin-selective reactions of radical pairs act as quantum measurements,” Chem. Phys. Lett. 488(1–3), 90–93 (2010).
    [Crossref]
  22. K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
    [Crossref]
  23. K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
    [Crossref] [PubMed]
  24. H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
    [Crossref]
  25. D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
    [Crossref] [PubMed]
  26. R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
    [Crossref] [PubMed]
  27. M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
    [Crossref] [PubMed]

2015 (4)

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
[Crossref] [PubMed]

D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
[Crossref] [PubMed]

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

2014 (2)

R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
[Crossref] [PubMed]

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

2011 (2)

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
[Crossref] [PubMed]

2010 (1)

J. A. Jones and P. J. Hore, “Spin-selective reactions of radical pairs act as quantum measurements,” Chem. Phys. Lett. 488(1–3), 90–93 (2010).
[Crossref]

2008 (1)

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

2007 (3)

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
[Crossref] [PubMed]

A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[Crossref] [PubMed]

2005 (2)

B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
[Crossref] [PubMed]

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

2003 (1)

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

2001 (1)

J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
[Crossref] [PubMed]

1999 (1)

J. R. Kirtley and J. P. Wikswo., “Scanning Squid Microscopy,” Annu. Rev. Mater. Sci. 29(1), 117–148 (1999).
[Crossref]

1996 (1)

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

1992 (1)

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

1989 (1)

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[Crossref]

1987 (2)

Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 A Resolution,” Appl. Phys. Lett. 50(20), 1455 (1987).
[Crossref]

U. Hartmann, “A theoretical analysis of Bitter-pattern evolution,” J. Magn. Magn. Mater. 68(3), 298–304 (1987).
[Crossref]

1982 (1)

K. Schulten, “Magnetic field effects in chemistry and biology,” Adv. Solid State Phys. 22, 61–83 (1982).
[Crossref]

1981 (1)

J. L. Kirschvink and J. L. Gould, “Biogenic magnetite as a basis for magnetic field detection in animals,” Biosystems 13(3), 181–201 (1981).
[Crossref] [PubMed]

1978 (1)

K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
[Crossref]

1975 (1)

R. Blakemore, “Magnetotactic bacteria,” Science 190(4212), 377–379 (1975).
[Crossref] [PubMed]

Allwood, D. A.

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

Antill, L. M.

J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
[Crossref] [PubMed]

Beardmore, J. P.

J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
[Crossref] [PubMed]

Bevins, W.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Blakemore, R.

R. Blakemore, “Magnetotactic bacteria,” Science 190(4212), 377–379 (1975).
[Crossref] [PubMed]

Brinks, D.

D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
[Crossref] [PubMed]

Cai, M.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Cao, H.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Cappellaro, P.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Chang, A. M.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Chang, T. Y.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Chappert, C.

C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
[Crossref] [PubMed]

Chen, J.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Cintolesi, F.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Cohen, A. E.

D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
[Crossref] [PubMed]

H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
[Crossref] [PubMed]

Cooke, M. D.

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

Cowburn, R. P.

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

Cox, A.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Diebel, C. E.

J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
[Crossref] [PubMed]

Dodson, C. A.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

Don Paul, C.

R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
[Crossref] [PubMed]

Ebrecht, R.

R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
[Crossref] [PubMed]

Fert, A.

C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
[Crossref] [PubMed]

Friedman, G.

B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
[Crossref] [PubMed]

Fujiwara, Y.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Fukazawa, Y.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Gao, J.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Glenn, D.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Gould, J. L.

J. L. Kirschvink and J. L. Gould, “Biogenic magnetite as a basis for magnetic field detection in animals,” Biosystems 13(3), 181–201 (1981).
[Crossref] [PubMed]

Gust, D.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Guzman, J.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Haino, T.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Hallen, H. D.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Harriott, L.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Hartmann, U.

U. Hartmann, “A theoretical analysis of Bitter-pattern evolution,” J. Magn. Magn. Mater. 68(3), 298–304 (1987).
[Crossref]

Hemmer, P. R.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Henbest, K. B.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Hess, H. F.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Higbie, J. M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Honda, H.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Hore, P. J.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

J. A. Jones and P. J. Hore, “Spin-selective reactions of radical pairs act as quantum measurements,” Chem. Phys. Lett. 488(1–3), 90–93 (2010).
[Crossref]

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Hovorka, O.

B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
[Crossref] [PubMed]

Ito, A.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Jiang, J.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Jones, J. A.

J. A. Jones and P. J. Hore, “Spin-selective reactions of radical pairs act as quantum measurements,” Chem. Phys. Lett. 488(1–3), 90–93 (2010).
[Crossref]

Kao, H. L.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Kirschvink, J. L.

J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
[Crossref] [PubMed]

J. L. Kirschvink and J. L. Gould, “Biogenic magnetite as a basis for magnetic field detection in animals,” Biosystems 13(3), 181–201 (1981).
[Crossref] [PubMed]

Kirtley, J. R.

J. R. Kirtley and J. P. Wikswo., “Scanning Squid Microscopy,” Annu. Rev. Mater. Sci. 29(1), 117–148 (1999).
[Crossref]

Klein, A. J.

D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
[Crossref] [PubMed]

Kobayashi, T.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Kuprov, I.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Kwo, J.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Le Sage, D.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Lee, H.

H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
[Crossref] [PubMed]

Leslie, S. R.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Liddell, P. A.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Lu, A. H.

A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[Crossref] [PubMed]

Lukin, M. D.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Maeda, K.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Martin, Y.

Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 A Resolution,” Appl. Phys. Lett. 50(20), 1455 (1987).
[Crossref]

Miller, R. E.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Mody, V. V.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Murakami, M.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

Parihar, H.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Park, H.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Pham, L. M.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Rodgers, C. T.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Sadler, L. E.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Salabas, E. L.

A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[Crossref] [PubMed]

Schulten, K.

K. Schulten, “Magnetic field effects in chemistry and biology,” Adv. Solid State Phys. 22, 61–83 (1982).
[Crossref]

K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
[Crossref]

Schüth, F.

A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[Crossref] [PubMed]

Shah, S.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Shinkai, M.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

Singh, A.

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Stamper-Kurn, D. M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Stanwix, P. L.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Steiner, U. E.

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[Crossref]

Swenberg, C. E.

K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
[Crossref]

Tanimoto, Y.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Tian, Z.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Timmel, C. R.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

Trifonov, A.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Tung, C. H.

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Ulrich, T.

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[Crossref]

Van Dau, F. N.

C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
[Crossref] [PubMed]

van der Ziel, J.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Vengalattore, M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Walker, M. M.

J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
[Crossref] [PubMed]

Wallace, M. I.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

Walsworth, R. L.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Wang, H.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Wang, Z.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Wedge, C. J.

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

Weller, A.

K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
[Crossref]

Wickramasinghe, H. K.

Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 A Resolution,” Appl. Phys. Lett. 50(20), 1455 (1987).
[Crossref]

Wikswo, J. P.

J. R. Kirtley and J. P. Wikswo., “Scanning Squid Microscopy,” Annu. Rev. Mater. Sci. 29(1), 117–148 (1999).
[Crossref]

Wolfe, R.

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Woodward, J. R.

J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
[Crossref] [PubMed]

Wouters, F. S.

R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
[Crossref] [PubMed]

Xiong, G.

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

Xu, H.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Yacoby, A.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Yang, N.

H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
[Crossref] [PubMed]

Yellen, B. B.

B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
[Crossref] [PubMed]

Yeung, T. K.

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Zhang, M.

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Adv. Solid State Phys. (1)

K. Schulten, “Magnetic field effects in chemistry and biology,” Adv. Solid State Phys. 22, 61–83 (1982).
[Crossref]

Angew. Chem. (1)

J. P. Beardmore, L. M. Antill, and J. R. Woodward, “Optical absorption and magnetic field effect based imaging of transient radicals,” Angew. Chem. 54(29), 8494–8497 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

J. R. Kirtley and J. P. Wikswo., “Scanning Squid Microscopy,” Annu. Rev. Mater. Sci. 29(1), 117–148 (1999).
[Crossref]

Appl. Nanosci. (1)

V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, “Magnetic nanoparticle drug delivery systems for targeting tumor,” Appl. Nanosci. 4(4), 385–392 (2014).
[Crossref]

Appl. Phys. Lett. (2)

A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang, “Scanning Hall probe microscopy,” Appl. Phys. Lett. 61(16), 1974 (1992).
[Crossref]

Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ‘force microscopy’ with 1000 A Resolution,” Appl. Phys. Lett. 50(20), 1455 (1987).
[Crossref]

Biophys. J. (1)

D. Brinks, A. J. Klein, and A. E. Cohen, “Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage,” Biophys. J. 109(5), 914–921 (2015).
[Crossref] [PubMed]

Biosystems (1)

J. L. Kirschvink and J. L. Gould, “Biogenic magnetite as a basis for magnetic field detection in animals,” Biosystems 13(3), 181–201 (1981).
[Crossref] [PubMed]

Bull. Chem. Soc. Jpn. (1)

H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C. H. Tung, and Y. Tanimoto, “Magnetic field effects on intramolecular exciplex fluorescence of chain-linked phenanthrene and n, n-dimethylaniline: influence of chain length, solvent, and temperature,” Bull. Chem. Soc. Jpn. 69(10), 2801–2813 (1996).
[Crossref]

Chem. Commun. (Camb.) (1)

C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore, “Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes,” Chem. Commun. (Camb.) 51(38), 8023–8026 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

J. A. Jones and P. J. Hore, “Spin-selective reactions of radical pairs act as quantum measurements,” Chem. Phys. Lett. 488(1–3), 90–93 (2010).
[Crossref]

Chem. Rev. (1)

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[Crossref]

Curr. Opin. Neurobiol. (1)

J. L. Kirschvink, M. M. Walker, and C. E. Diebel, “Magnetite-based magnetoreception,” Curr. Opin. Neurobiol. 11(4), 462–467 (2001).
[Crossref] [PubMed]

J. Biosci. Bioeng. (1)

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100(1), 1–11 (2005).
[Crossref] [PubMed]

J. Magn. Magn. Mater. (1)

U. Hartmann, “A theoretical analysis of Bitter-pattern evolution,” J. Magn. Magn. Mater. 68(3), 298–304 (1987).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys. 36(18), 2175–2182 (2003).
[Crossref]

Nano Lett. (1)

H. Lee, N. Yang, and A. E. Cohen, “Mapping nanomagnetic fields using a radical pair reaction,” Nano Lett. 11(12), 5367–5372 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6(11), 813–823 (2007).
[Crossref] [PubMed]

Nature (1)

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys. 13(4), 045021 (2011).
[Crossref]

Phys. Chem. Chem. Phys. (1)

M. Zhang, J. Chen, J. Gao, Z. Wang, H. Xu, M. Cai, J. Jiang, Z. Tian, and H. Wang, “Magnetic-field-enabled resolution enhancement in super-resolution imaging,” Phys. Chem. Chem. Phys. 17(10), 6722–6727 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98(20), 200801 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proc. Natl. Acad. Sci. U.S.A. 102(25), 8860–8864 (2005).
[Crossref] [PubMed]

Protoplasma (1)

R. Ebrecht, C. Don Paul, and F. S. Wouters, “Fluorescence lifetime imaging microscopy in the medical sciences,” Protoplasma 251(2), 293–305 (2014).
[Crossref] [PubMed]

Science (1)

R. Blakemore, “Magnetotactic bacteria,” Science 190(4212), 377–379 (1975).
[Crossref] [PubMed]

Z. Phys. Chem. (1)

K. Schulten, C. E. Swenberg, and A. Weller, “A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion,” Z. Phys. Chem. 111(1), 1–5 (1978).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Apparatus for 2-photon magnetic field imaging. A) Magneto-fluorescent indicator, Phen-12-O-2-DMA. B) Sample geometry. Top: side view of the sample chamber. The glass plate ensured that the Fe wire did not move in the applied magnetic field. Bottom: top view of the sample chamber showing the arrangement of the permanent magnets and the elliptical cross-section of the Fe wire in the center of the chamber. C) Two-photon imaging apparatus. Abbreviations explained in the main text.

Fig. 2
Fig. 2

Magnetic Field Effect of Phen-12-O-2-DMA. Steady-state fluorescence change, normalized to fluorescence at B = 0, as a function of magnetic field (λem = 430 – 570 nm). Line is for one-photon excitation (λexc = 355 nm) and dots are for two-photon excitation (λexc = 710 nm).

Fig. 3
Fig. 3

3D mapping of MFE around an iron wire. A) Contours of MFE strength in a slice imaged around the Fe wire at z = 50 µm. B) 3-dimensional mapping of the MFE around a section of Fe wire. Contours represent surfaces of constant MFE strength. Images were acquired with δz = 10 μm between sections, and 500 nm in-plane spatial resolution.

Fig. 4
Fig. 4

MFE mapped with 2-photon-excited time correlated single photon counting. A) Histogram of arrival times relative to the excitation pulse at t = 4 ns for three locations around the wire with different magnetic field strengths. B-D) Images of the ratio of slow to fast fluorescence counts. This ratio reports local magnetic field without need for a reference image. Scale bars 10 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MFE= F B F 0 F 0 ,
MFE(r,θ)= I(r,θ) I(r,θ) θ I(r,θ) θ .

Metrics