Abstract

We report on the generation of modulated spikes distributed across a mode-locked pulse profile, which is termed as “additive mode-locked resembling (AMLR)”, in a Tm-doped fiber laser with a hybrid cavity configuration based on nonlinear polarization rotation (NPR) technique. The hybrid cavity configuration is composed of a ring cavity containing a micro Fabry-Perot (F-P) cavity. The F-P cavity is used to take the cavity-trip frequency (CTF) modulation on the mode-locked pulses for forming AMLR pulses. We observe AMLR pulses with uniform and chirped modulation depths, as well as uniform and nonuniform spike separations, respectively. Numerical simulations confirm the experimental observations and show that the filtering effect of the F-P cavity is the main mechanism for taking CTF modulation on mode-locked pulses to generate AMLR pulses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanisms of generation of multi-peak and mode-locked resembling pulses in Q-switched Yb-doped fiber lasers

B. N. Upadhyaya, Usha Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy, and S. M. Oak
Opt. Express 15(18) 11576-11588 (2007)

Generation of Q-switched mode locking controlled rectangular noise-like soliton bunching in a Tm-doped fiber laser

Tian Qiao, Weicheng Chen, Wei Lin, and Zhongmin Yang
Opt. Express 24(16) 18755-18763 (2016)

Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation

Xiong Wang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Opt. Express 22(5) 6147-6153 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
    [Crossref] [PubMed]
  2. S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
    [Crossref]
  3. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  4. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
    [Crossref] [PubMed]
  5. W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
    [Crossref]
  6. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
    [Crossref] [PubMed]
  7. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  8. W. Zhou and D. Shen, “Above 100 nJ solitons from a passively mode-locked thulium-doped fiber oscillator,” Laser Phys. Lett. 12(7), 075103 (2015).
    [Crossref]
  9. K. Yin, B. Zhang, W. Yang, H. Chen, S. Chen, and J. Hou, “Flexible picosecond thulium-doped fiber laser using the active mode-locking technique,” Opt. Lett. 39(14), 4259–4262 (2014).
    [Crossref] [PubMed]
  10. X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
    [Crossref]
  11. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16(26), 22058–22063 (2008).
    [Crossref] [PubMed]
  12. H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
    [Crossref]
  13. J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38(10), 1624–1626 (2013).
    [Crossref] [PubMed]
  14. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
    [Crossref]
  15. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  16. B. N. Upadhyaya, U. Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy, and S. M. Oak, “Mechanisms of generation of multi-peak and mode-locked resembling pulses in Q-switched Yb-doped fiber lasers,” Opt. Express 15(18), 11576–11588 (2007).
    [Crossref] [PubMed]
  17. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Hybrid-pumped, gain-switched 1120 nm ytterbium-doped fiber laser,” Appl. Opt. 52(33), 8008–8012 (2013).
    [Crossref] [PubMed]
  18. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32(3), 286–290 (1993).
    [Crossref] [PubMed]
  19. F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
    [Crossref] [PubMed]
  20. W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
    [Crossref]
  21. S. Chouli and Ph. Grelu, “Soliton rains in a fiber laser: an experimental study,” Phys. Rev. A 81(6), 063829 (2010).
    [Crossref]
  22. M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
    [Crossref] [PubMed]
  23. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
    [Crossref]
  24. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  25. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33(24), 3025–3027 (2008).
    [Crossref] [PubMed]
  26. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  27. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [Crossref] [PubMed]
  28. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref] [PubMed]
  29. Y. L. Qi, H. Liu, H. Cui, Y.-Q. Huang, Q.-Y. Ning, M. Liu, Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23(14), 17720–17726 (2015).
    [Crossref] [PubMed]
  30. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
    [Crossref] [PubMed]

2015 (2)

2014 (7)

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, W. Yang, H. Chen, S. Chen, and J. Hou, “Flexible picosecond thulium-doped fiber laser using the active mode-locking technique,” Opt. Lett. 39(14), 4259–4262 (2014).
[Crossref] [PubMed]

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

2013 (6)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38(10), 1624–1626 (2013).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Hybrid-pumped, gain-switched 1120 nm ytterbium-doped fiber laser,” Appl. Opt. 52(33), 8008–8012 (2013).
[Crossref] [PubMed]

2012 (3)

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

S. Chouli and Ph. Grelu, “Soliton rains in a fiber laser: an experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

2009 (1)

2008 (4)

2007 (1)

2005 (2)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
[Crossref] [PubMed]

1993 (1)

Akhmediev, N.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Amrani, F.

Byer, R. L.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Chakravarty, U.

Chang, C.-H.

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Chen, D.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Chen, G.-J.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Chen, H.

Chen, L. B.

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Chen, S.

Chen, W.-C.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Chen, Y.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Chong, A.

Chouli, S.

S. Chouli and Ph. Grelu, “Soliton rains in a fiber laser: an experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Chrostowski, J.

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Cui, H.

Cui, Y.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Grelu, P.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

Grelu, Ph.

S. Chouli and Ph. Grelu, “Soliton rains in a fiber laser: an experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Guina, M.

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Han, D. A.

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Han, D.-A.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

He, X.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Hou, J.

Huang, Y.-Q.

Jackson, S. D.

Kivistö, S.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Koningstein, J. A. K.

Koskinen, R.

Kuruvilla, A.

Leblond, H.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Lecaplain, C.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Li, B.

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Li, J.

Lin, S.-T.

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Lin, W.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Liu, H.

Liu, M.

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

Liu, Y.

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Luo, A.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Luo, A.-P.

Luo, H.

Luo, Z.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Luo, Z.-C.

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Martinez, A.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Michalska, M.

Mikhailov, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Mitschke, F.

M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
[Crossref] [PubMed]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Mou, C.

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Myslinski, P.

Ning, Q.-Y.

Oak, S. M.

Okhotnikov, O. G.

Paajaste, J.

Pagel, T.

M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
[Crossref] [PubMed]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qi, Y. L.

Qian, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Rabin, B.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Renninger, W. H.

Rozhin, A.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Salhi, M.

Sanchez, F.

F. Amrani, M. Salhi, P. Grelu, H. Leblond, and F. Sanchez, “Universal soliton pattern formations in passively mode-locked fiber lasers,” Opt. Lett. 36(9), 1545–1547 (2011).
[Crossref] [PubMed]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Sergeyev, S. V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Shen, D.

W. Zhou and D. Shen, “Above 100 nJ solitons from a passively mode-locked thulium-doped fiber oscillator,” Laser Phys. Lett. 12(7), 075103 (2015).
[Crossref]

Shen, M. C.

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Shenoy, M. R.

Sheu, J.-K.

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Simpson, J. R.

Song, F.

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

Soto-Crespo, J. M.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Stratmann, M.

M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
[Crossref] [PubMed]

Sun, Z.

Swiderski, J.

Tang, D.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Thyagarajan, K.

Tsai, T.-Y.

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Tsao, H.-X.

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Tsatourian, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Turitsyn, S. K.

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Upadhyaya, B. N.

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Wang, X.

Wang, Z.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wen, S.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Westbrook, P. S.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Wise, F. W.

Xiao, H.

Xu, B.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Xu, S.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Xu, W.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Xu, W.-C.

Xu, X.

Yamashita, S.

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

Yan, Z.

Yang, Q.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, T.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, W.

Yang, Z.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yin, K.

Yuan, X.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Zhang, B.

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “Hybrid-pumped, gain-switched 1120 nm ytterbium-doped fiber laser,” Appl. Opt. 52(33), 8008–8012 (2013).
[Crossref] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Zhang, L.

Zhang, Z.

Zhao, C.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Zhou, P.

Zhou, W.

W. Zhou and D. Shen, “Above 100 nJ solitons from a passively mode-locked thulium-doped fiber oscillator,” Laser Phys. Lett. 12(7), 075103 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Appl. Phys. Lett. (1)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Eur. Phys. J. D (1)

W.-C. Chen, W.-C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen, “Vector solitons in femtosecond fibre lasers,” Eur. Phys. J. D 48(2), 255–260 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Laser Phys. Lett. (1)

W. Zhou and D. Shen, “Above 100 nJ solitons from a passively mode-locked thulium-doped fiber oscillator,” Laser Phys. Lett. 12(7), 075103 (2015).
[Crossref]

Nat. Commun. (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Y. L. Qi, H. Liu, H. Cui, Y.-Q. Huang, Q.-Y. Ning, M. Liu, Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser,” Opt. Express 23(14), 17720–17726 (2015).
[Crossref] [PubMed]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21(16), 18969–18974 (2013).
[Crossref] [PubMed]

S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16(26), 22058–22063 (2008).
[Crossref] [PubMed]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

B. N. Upadhyaya, U. Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy, and S. M. Oak, “Mechanisms of generation of multi-peak and mode-locked resembling pulses in Q-switched Yb-doped fiber lasers,” Opt. Express 15(18), 11576–11588 (2007).
[Crossref] [PubMed]

Opt. Fiber Technol. (3)

S. Yamashita, A. Martinez, and B. Xu, “Short pulse fiber lasers mode-locked by carbon nanotubes and graphene,” Opt. Fiber Technol. 20(6), 702–713 (2014).
[Crossref]

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

W.-C. Chen, G.-J. Chen, D.-A. Han, and B. Li, “Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber,” Opt. Fiber Technol. 20(3), 199–207 (2014).
[Crossref]

Opt. Laser Technol. (1)

H.-X. Tsao, C.-H. Chang, S.-T. Lin, J.-K. Sheu, and T.-Y. Tsai, “Passively gain-switched and self mode-locked thulium fiber laser at 1950 nm,” Opt. Laser Technol. 56, 354–357 (2014).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (3)

S. Chouli and Ph. Grelu, “Soliton rains in a fiber laser: an experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81(2), 023811 (2010).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Phys. Rev. Lett. (2)

M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902 (2005).
[Crossref] [PubMed]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108(23), 233901 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Measured temporal pulse train. Inset, the fine structure of an AMLR pulse. (b) RF spectrum. Inset, the zoom-in of RF spectrum of mode-locked pulses.

Fig. 3
Fig. 3

AMLR pulses spectra for different pump powers.

Fig. 4
Fig. 4

The temporal AMLR pulses with different modulation depths.

Fig. 5
Fig. 5

The chirped spike modulation of AMLR pulses. Insert, the corresponding spectrum.

Fig. 6
Fig. 6

(a) Temporal AMLR pulses with nonuniform separations. Left inset, the separation between two neighboring marked spikes. Right inset, RF spectrum of spikes. (b) The corresponding spectrum.

Fig. 7
Fig. 7

Calculated transient spectral evolution.

Fig. 8
Fig. 8

Calculated AMLR pulse profiles with different modulation depths. Up, Es = 200 pJ; Down, Es = 500 pJ.

Fig. 9
Fig. 9

Calculated AMLR pulses with nonuniform spike separations. Inset, the corresponding spectrum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u z =i β 2 2 2 u t 2 +iγ|u | 2 u+ g 2 u+ g 2 Ω 2 2 u t 2
g= g 0 exp( |u | 2 dt E s )
T sat =1 m 0 /[1+ P(t) P sat ]
T FP = (1 A 1R ) 2 /(1+ 2 R 1R sin 2πnl λ )
Δλ= λ 2 /2nl

Metrics