Abstract

We demonstrate that Arbitrary-Detuning ASynchronous OPtical Sampling (AD-ASOPS) makes possible multiscale pump-probe spectroscopy with time delays spanning from picosecond to millisecond. The implementation on pre-existing femtosecond amplifiers seeded by independent free-running oscillators is shown to be straightforward. The accuracy of the method is determined by comparison with spectral interferometry, providing a distribution with a standard deviation ranging from 0.31 to 1.7 ps depending on experimental conditions and on the method used to compute the AD-ASOPS delays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiscale control and rapid scanning of time delays ranging from picosecond to millisecond

Xavier Solinas, Laura Antonucci, Adeline Bonvalet, and Manuel Joffre
Opt. Express 25(15) 17811-17819 (2017)

Asynchronous optical sampling with arbitrary detuning between laser repetition rates

Laura Antonucci, Xavier Solinas, Adeline Bonvalet, and Manuel Joffre
Opt. Express 20(16) 17928-17937 (2012)

Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate

Oliver Kliebisch, Dirk C. Heinecke, and Thomas Dekorsy
Opt. Express 24(26) 29930-29940 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
    [Crossref]
  2. J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
    [Crossref] [PubMed]
  3. M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).
  4. E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
    [Crossref]
  5. P. A. Elzinga, R. J. Kneisler, F.E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump probe method for fast analysis of visible spectral signatures utilizing asynchronous optical-sampling,” Appl. Opt. 26, 4303–4309 (1987).
    [Crossref] [PubMed]
  6. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump probe spectroscopy by asynchronous optical-sampling,” Appl. Spectrosc. 41, 2–4 (1987).
    [Crossref]
  7. J. D. Kafka, J. W. Pieterse, and M. L. Watts, “2-color subpicosecond optical-sampling technique,” Opt. Lett. 17, 1286–1288 (1992).
    [Crossref] [PubMed]
  8. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref] [PubMed]
  9. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express 20, 5974–5983 (2010).
    [Crossref]
  10. J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
    [Crossref]
  11. A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
    [Crossref]
  12. L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928–17937 (2012).
    [Crossref] [PubMed]
  13. L. Antonucci, A. Bonvalet, X. Solinas, M. R. Jones, M. H. Vos, and M. Joffre, “Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers,” Opt. Lett. 38, 3322–3324 (2013).
    [Crossref] [PubMed]
  14. F. Reynaud, F. Salin, and A. Barhtelemy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989).
    [Crossref] [PubMed]
  15. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [Crossref]
  16. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [Crossref]

2013 (1)

2012 (1)

2011 (1)

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

2010 (1)

2005 (2)

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

2004 (2)

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref] [PubMed]

2000 (1)

1996 (1)

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

1995 (1)

1992 (1)

1989 (1)

1987 (2)

1977 (1)

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
[Crossref]

Antonucci, L.

Barhtelemy, A.

Bartels, A.

Belabas, N.

Bonvalet, A.

Bredenbeck, J.

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
[Crossref]

Cao, W. X.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Champion, P. M.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Chériaux, G.

Dekorsy, T.

Dorr, F.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
[Crossref]

Dorrer, C.

Elzinga, P. A.

Fermann, M. E.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

Fufina, T. Y.

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

Gebs, R.

Gohle, C.

Hamm, P.

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
[Crossref]

Harter, D. J.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

Helbing, J.

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
[Crossref]

Hofer, M.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

Holzwarth, R.

Ionascu, D.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Janke, C.

Jian, Y.

Jiang, Y.

Joffre, M.

Jones, M. R.

Kafka, J. D.

Keilmann, F.

King, G. B.

Klatt, G.

Kneisler, R. J.

Kumita, J. R.

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

Laurendeau, N. M.

Leonova, M. M.

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

Lepetit, L.

Likforman, J. P.

Lill, E.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
[Crossref]

Lytle, F. E.

Lytle, F.E.

Pieterse, J. W.

Reynaud, F.

Salin, F.

Schneider, S.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
[Crossref]

Shuvalov, V. A.

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

Solinas, X.

Sucha, G.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

Vasilieva, L. G.

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

Vos, M. H.

Watts, M. L.

Woolley, G. A.

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

Ye, X.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Yu, A. C.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (1)

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys. 14, 399–401 (1977).
[Crossref]

Appl. Spectrosc. (1)

Biochem. (1)

M. M. Leonova, T. Y. Fufina, L. G. Vasilieva, and V. A. Shuvalov, “Structure-function investigations of bacterial photosynthetic reaction centers,” Biochem. 76, 1465–1483 (2011).

IEEE J. Sel. Top. Quantum Electron. (1)

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 605–621 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U. S. A. (1)

J. Bredenbeck, J. Helbing, J. R. Kumita, G. A. Woolley, and P. Hamm, “Alpha-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 2379–2384 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instrum. 75, 4462–4466 (2004).
[Crossref]

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

AD-ASOPS experimental setup. Two femtosecond amplifiers produce the pump (laser 1) and probe (laser 2) pulses required for the pump-probe experiment. A small fraction of the two free-running oscillator laser beams is directed towards a fiber-based interferometer associated with a balanced detection for coincidence monitoring. The AD-ASOPS device tracks the time delay between all pulse pairs and delivers the trigger signals of both amplifiers for coarse control of the time delay. The computer unit finally reconstructs the detected signal as function of pump-probe delay.

Fig. 2
Fig. 2

Time delays measured by kHz AD-ASOPS for 100 consecutive amplified pulses.

Fig. 3
Fig. 3

Fiber-based interferometer for time-delay measurement using spectral interferometry. Beams 1 and 2 propagate through optical fibers of different lengths (resp. 5 and 10 m) before recombination and spectrally-resolved detection for each amplified pulse pair.

Fig. 4
Fig. 4

Serie of 500 consecutive spectra measured in case of a coarse time delay set to zero. Horizontal arrows show the cases where the time delay happened to be small enough for resolving the spectral fringes.

Fig. 5
Fig. 5

(a) Measured spectrum in case where 0 < τ < 25 ps. (b) Spectral amplitude (red) and phase (blue) retrieved by FTSI.

Fig. 6
Fig. 6

(a) Measured spectrum in case where −25 ps < τ < 0. (b) Spectral amplitude (red) and phase (blue) retrieved by FTSI.

Fig. 7
Fig. 7

(a) FTSI delays plotted as function of AD-ASOPS delays. Blue dots are determined by using all coincidence events, whereas red diamonds result from a subset associated with a selection of coincidence events separated by less than 0.2 ms (23% of the entire data set). The dashed line is a straight line with a slope equal to one. (b) Histogram of the difference between FTSI and AD-ASOPS delays without (blue) and with (red) selection of coincidence events less than 0.2 ms apart. (c) Histogram of the difference between FTSI and AD-ASOPS delays with no coincidence selection but using the quadratic law discussed in the text.

Fig. 8
Fig. 8

FTSI delays plotted as function of AD-ASOPS delays measured when an additional 25-m optical fiber is inserted in beam 2 of the spectral interferometer. The AD-ASOPS time delays are calculated using a quadratic fit based on three coincidence events.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ t n = ( a 0 + a 1 n ) [ T 1 ]
a 1 = ( T 2 T 1 ) [ T 1 ] = T 2 [ T 1 ]
a 1 = N 1 T 1 N 2 [ T 1 ]
S ( ω ) = | E 1 ( ω ) + E 2 ( ω ) | 2 = | E 1 ( ω ) | 2 + | E 2 ( ω ) | 2 + 2 | E 1 * ( ω ) E 2 ( ω ) | cos ( Δ φ ( ω ) + ω τ ) ,
Δ t n = ( a 0 + a 1 n + a 2 n 2 ) [ T 1 ]

Metrics