Abstract

We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control over the spectral point spacing, bandwidth and central wavelength of the comb. The comb is mixed with a local oscillator generated from the same CW laser frequency-shifted by an acousto-optic modulator, enabling a self-heterodyne detection scheme. The current configuration offers a calibrated spectrum every 1.12 µs. We demonstrate the capabilities of the spectrometer by producing averaged, as well as time-resolved, spectra of the D1 transition of cesium with a 9.8-MHz point spacing, a 50-kHz resolution and a span of more than 3 GHz. The spectra obtained after 1 ms of averaging are fitted with complex Voigt profiles that return parameters in good agreement with expected values.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-noise removal and on-line calibration for accurate frequency comb interference spectroscopy of acetylene

Jean-Daniel Deschênes and Jérôme Genest
Appl. Opt. 53(4) 731-735 (2014)

Coherent cavity-enhanced dual-comb spectroscopy

Adam J. Fleisher, David A. Long, Zachary D. Reed, Joseph T. Hodges, and David F. Plusquellic
Opt. Express 24(10) 10424-10434 (2016)

Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation

Takahide Sakamoto, Tetsuya Kawanishi, and Masayuki Izutsu
Opt. Lett. 31(6) 811-813 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  2. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
    [Crossref]
  3. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
    [Crossref] [PubMed]
  4. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  5. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  6. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref] [PubMed]
  7. N. B. Hébert, S. K. Scholten, R. T. White, J. Genest, A. N. Luiten, and J. D. Anstie, “A quantitative mode-resolved frequency comb spectrometer,” Opt. Express 23, 13991–14001 (2015).
    [Crossref] [PubMed]
  8. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref] [PubMed]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  10. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
    [Crossref] [PubMed]
  11. G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
    [Crossref]
  12. A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
    [Crossref]
  13. V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
    [Crossref]
  14. M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13 c 2 h 2 saturated-absorption lines at 1.5 µ m,” Opt. Lett. 19, 840–842 (1994).
    [Crossref] [PubMed]
  15. D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
    [Crossref]
  16. E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
    [Crossref] [PubMed]
  17. A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
    [Crossref] [PubMed]
  18. J.-D. Deschênes and J. Genest, “Frequency-noise removal and on-line calibration for accurate frequency comb interference spectroscopy of acetylene,” Appl. Opt. 53, 731–735 (2014).
    [Crossref] [PubMed]
  19. K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
    [Crossref]
  20. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
    [Crossref]
  21. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref] [PubMed]
  22. V. Duran, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” http://arxiv.org/abs/1507.04288 .
  23. M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.
  24. E. Mommertz and S. Müller, “Measuring impulse responses with digitally pre-emphasized pseudorandom noise derived from maximum-length sequences,” Appl. Acoust. 44, 195–214 (1995).
    [Crossref]
  25. T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.
  26. R. R. Ernst, “Magnetic resonance with stochastic excitation,” J. Mag. Reson. 3, 10–27 (1970).
  27. R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
    [Crossref]
  28. H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
    [Crossref]
  29. G. De Vine, D. S. Rabeling, B. J. Slagmolen, T. T. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
    [Crossref] [PubMed]
  30. K. Dinse, M. Winters, and J. L. Hall, “Doppler-free optical multiplex spectroscopy with stochastic excitation,” J. Opt. Soc. Am. B 5, 1825–1831 (1988).
    [Crossref]
  31. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref] [PubMed]
  32. D. A. Steck, “Cesium d line data,” http://steck.us/alkalidata .
  33. S. Haykin, Communication Systems(John Wiley & Sons, 2001).
  34. S. Abrarov and B. M. Quine, “Efficient algorithmic implementation of the voigt/complex error function based on exponential series approximation,” Appl. Math. Comput. 218, 1894–1902 (2011).
    [Crossref]
  35. W. Demtröder, Laser spectroscopy: basic concepts and instrumentation(Springer Science & Business Media, 2003).
    [Crossref]
  36. T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
    [Crossref]

2015 (1)

2014 (4)

2012 (3)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
[Crossref] [PubMed]

2011 (3)

S. Abrarov and B. M. Quine, “Efficient algorithmic implementation of the voigt/complex error function based on exponential series approximation,” Appl. Math. Comput. 218, 1894–1902 (2011).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

2009 (2)

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

G. De Vine, D. S. Rabeling, B. J. Slagmolen, T. T. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
[Crossref] [PubMed]

2008 (3)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

2007 (3)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

2006 (1)

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

2005 (2)

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

1995 (1)

E. Mommertz and S. Müller, “Measuring impulse responses with digitally pre-emphasized pseudorandom noise derived from maximum-length sequences,” Appl. Acoust. 44, 195–214 (1995).
[Crossref]

1994 (1)

1988 (1)

1983 (1)

H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
[Crossref]

1980 (1)

1970 (1)

R. R. Ernst, “Magnetic resonance with stochastic excitation,” J. Mag. Reson. 3, 10–27 (1970).

Abrarov, S.

S. Abrarov and B. M. Quine, “Efficient algorithmic implementation of the voigt/complex error function based on exponential series approximation,” Appl. Math. Comput. 218, 1894–1902 (2011).
[Crossref]

Anstie, J.

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

Anstie, J. D.

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Baba, H.

H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
[Crossref]

Balslev-Clausen, D.

Bartels, A.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Bendahmane, A.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Bielska, K.

Bjorklund, G. C.

Boudreau, S.

Brown, L. R.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Calkins, K.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Casa, G.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Castrillo, A.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Chua, S.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

De Labachelerie, M.

De Vine, G.

Demtröder, W.

W. Demtröder, Laser spectroscopy: basic concepts and instrumentation(Springer Science & Business Media, 2003).
[Crossref]

Deschênes, J.-D.

Diddams, S.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Dinse, K.

Douglass, K. O.

Ernst, R. R.

R. R. Ernst, “Magnetic resonance with stochastic excitation,” J. Mag. Reson. 3, 10–27 (1970).

Felinto, D.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Fidder, H.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Fleisher, A. J.

Galzerano, G.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Genest, J.

Gerginov, V.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Gianfrani, L.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Gohle, C.

Hall, J. L.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Haykin, S.

S. Haykin, Communication Systems(John Wiley & Sons, 2001).

Hébert, N. B.

Helin, T.

T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Hodges, J. T.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Holzwarth, R.

Hovannysyan, T.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Huovinen, M.

T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Keilmann, F.

Kirchner, M. S.

Lam, T. T.

Laporta, P.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Long, D. A.

Luiten, A. N.

N. B. Hébert, S. K. Scholten, R. T. White, J. Genest, A. N. Luiten, and J. D. Anstie, “A quantitative mode-resolved frequency comb spectrometer,” Opt. Express 23, 13991–14001 (2015).
[Crossref] [PubMed]

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

Marian, A.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Maslowski, P.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Maxwell, S. E.

May, E. F.

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

McClelland, D. E.

McFerran, J. J.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Merlone, A.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Miller, C. E.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Millot, G.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Minoshima, K.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Mommertz, E.

E. Mommertz and S. Müller, “Measuring impulse responses with digitally pre-emphasized pseudorandom noise derived from maximum-length sequences,” Appl. Acoust. 44, 195–214 (1995).
[Crossref]

Müller, S.

E. Mommertz and S. Müller, “Measuring impulse responses with digitally pre-emphasized pseudorandom noise derived from maximum-length sequences,” Appl. Acoust. 44, 195–214 (1995).
[Crossref]

Nakagawa, K.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Nibbering, E. T.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Ohtsu, M.

Okumura, M.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Picqué, N.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Pines, E.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Pitois, S.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Plusquellic, D. F.

Potvin, S.

Quine, B. M.

S. Abrarov and B. M. Quine, “Efficient algorithmic implementation of the voigt/complex error function based on exponential series approximation,” Appl. Math. Comput. 218, 1894–1902 (2011).
[Crossref]

Rabeling, D. S.

Robichaud, D. J.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Roinila, T.

T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.

Roy, J.

Sachs, J.

R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
[Crossref]

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Sakai, O.

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Sakurai, K.

H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
[Crossref]

Scholten, S. K.

Shaddock, D. A.

Shimizu, F.

H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
[Crossref]

Slagmolen, B. J.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Stace, T. M.

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

Stowe, M. C.

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Tanner, C. E.

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

Thomä, R. S.

R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
[Crossref]

Thorpe, M. J.

Truong, G.-W.

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Urabe, K.

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Vilkko, M.

T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

White, R. T.

Winters, M.

Wuchenich, D. M.

Yan, M.

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

Yasui, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Ye, J.

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Yeung, L. Y.

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

Yokoyama, S.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Zetik, R.

R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
[Crossref]

Annu. Rev. Phys. Chem. (1)

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Appl. Acoust. (1)

E. Mommertz and S. Müller, “Measuring impulse responses with digitally pre-emphasized pseudorandom noise derived from maximum-length sequences,” Appl. Acoust. 44, 195–214 (1995).
[Crossref]

Appl. Math. Comput. (1)

S. Abrarov and B. M. Quine, “Efficient algorithmic implementation of the voigt/complex error function based on exponential series approximation,” Appl. Math. Comput. 218, 1894–1902 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[Crossref]

C. R. Phys. (1)

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Phys. 10, 894–906 (2009).
[Crossref]

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive machzehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

R. Zetik, J. Sachs, and R. S. Thomä, “Uwb short-range radar sensing-the architecture of a baseband, pseudo-noise uwb radar sensor,” IEEE Instrum. Meas. Mag. 10, 39–45 (2007).
[Crossref]

J. Mag. Reson. (1)

R. R. Ernst, “Magnetic resonance with stochastic excitation,” J. Mag. Reson. 3, 10–27 (1970).

J. Mol. Spectrosc. (1)

D. J. Robichaud, J. T. Hodges, P. Masłowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the o 2 a-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (3)

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and their impact on the fine-structure constant,” Phys. Rev. A 73, 032504 (2006).
[Crossref]

G.-W. Truong, E. F. May, T. M. Stace, and A. N. Luiten, “Quantitative atomic spectroscopy for primary thermometry,” Phys. Rev. A 83, 033805 (2011).
[Crossref]

T. M. Stace, G.-W. Truong, J. Anstie, E. F. May, and A. N. Luiten, “Power-dependent line-shape corrections for quantitative spectroscopy,” Phys. Rev. A 86, 012506 (2012).
[Crossref]

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95, 023001 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

H. Baba, K. Sakurai, and F. Shimizu, “Measurement system for temporal response of atomic and molecular systems using the correlation method with pseudorandomly modulated laser light,” Rev. Sci. Instrum. 54, 454–457 (1983).
[Crossref]

Sci. Rep. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 3816 (2014).
[Crossref]

Other (6)

V. Duran, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” http://arxiv.org/abs/1507.04288 .

M. Yan, S. Pitois, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, N. Picqué, and G. Millot, “Dual-comb spectroscopy with frequency-agile lasers,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. JTh5C–6.

T. Roinila, M. Huovinen, M. Vilkko, and T. Helin, “Continuous monitoring of industrial processes through cross-correlation techniques,” in Proceedings of the “18th IFAC World Congress” (2011), pp. 12171–12176.

W. Demtröder, Laser spectroscopy: basic concepts and instrumentation(Springer Science & Business Media, 2003).
[Crossref]

D. A. Steck, “Cesium d line data,” http://steck.us/alkalidata .

S. Haykin, Communication Systems(John Wiley & Sons, 2001).

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (1351 KB)      Time-resolved spectra, 12-µs resolution
» Visualization 2: MP4 (5930 KB)      Time-resolved spectra, 3-µs resolution

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. Solid black line are fiber links, dashed lines are electrical links and red lines represent free-space beams. Polarization controllers (PC) optimize the beat signals. The upper part of the setup is dedicated to the comparison of the CW laser with a stabilized mode-locked frequency comb. 133Cs: Cesium-133. P1: Photodiode 1. P2: Photodiode 2. P3: Balanced photodiode

Fig. 2
Fig. 2

(a) Electrical PRBS with bit rate fB, sequence rate fR and amplitude Vπ. (b) Field amplitude of a CW laser after phase modulation with a PRBS. (c) Power spectrum of a comb generated by phase modulating a CW laser with a PRBS. The mode spacing is fR and the full width at half maximum is approximately 0.886 × fB.

Fig. 3
Fig. 3

(a) Power spectrum of an optical comb generated with a PRBS (blue and orange) probing an atomic resonance and a local oscillator (green). A low mode density is used for clarity and different colours are used to differentiate both sides of the comb. The unperturbed sinc2-shaped envelope (no absorption) is shown with a dotted line. (b) Downmixed comb. (c) Downmixed comb after optical calibration with a reference channel.

Fig. 4
Fig. 4

(a) Downmixed comb after optical calibration affected by an electrical distorsion. The distortion applied to the spectrum is shown with an offset dotted line. (b) The black line shows the spectrum obtained after performing an electrical calibration using the adjacent modes seen on panel (a). The red dotted line represents the true atomic resonance.

Fig. 5
Fig. 5

Broad view of the downmixed optical comb where all frequencies are relative to νcfAOM. The highest peak corresponds to the optical carrier. An inset shows a closeup of the downmixed comb. The spacing is fR ≈ 9.8 MHz within a same family of comb modes.

Fig. 6
Fig. 6

Transmittance and phase spectra with their respective Voigt fit for the (a) FG = 4 line pair and (b) FG = 3 line pair. Residuals are shown under each spectrum. The relative (electrical) and absolute (optical) frequency axes are given. In (b), the relative axis is reversed with respect to the absolute axis since the LO is on the high-frequency side of the spectral features for this measurement.

Fig. 7
Fig. 7

Frame taken from Visualization 1 in which a pump laser scans the FG = 4 line pair. On that particular frame, the laser is coincident with the FG = 4 → FE = 4 transition. Visualization 2 shows the same process with a different temporal resolution.

Tables (1)

Tables Icon

Table 1 Widths, line splittings and absolute line centres for the D1 transition of cesium-133

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w ( z ) = V R ( z ) + i V I ( z )
T ( f ) = exp ( 2 j = 1 2 α j V R ( f ; f 0 j , σ j , γ j ) )
ϕ ( f ) = j = 1 2 α j V I ( f ; f 0 j , σ j , γ j )
T c ( f ) = ( k = 0 2 a k f k ) T ( f ) / T ( f )
ϕ c ( f ) = ( k = 0 2 b k f k ) + ϕ ( f ) + ϕ ( f )

Metrics