Abstract

Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods. The analysis results matched with the phenomena we observed in the transmission spectrum. Combining the analysis with the measurement results, we calculated the polarization rotation efficiency of the SSC in different samples and analyzed the origin of the polarization rotation effect. Finally, we discussed the influence of the effect to the DP-QPSK signal and proposed several methods to release the impact.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling

Yuriko Maegami, Ryohei Takei, Emiko Omoda, Takeru Amano, Makoto Okano, Masahiko Mori, Toshihiro Kamei, and Youichi Sakakibara
Opt. Express 23(16) 21287-21295 (2015)

Efficient TE/TM spot-size converter for broadband coupling to single mode fibers

Niharika Kohli, Michaël Ménard, and Winnie N. Ye
OSA Continuum 2(8) 2428-2438 (2019)

Design optimization and tolerance analysis of a spot-size converter for the taper-assisted vertical integration platform in InP

Valery Tolstikhin, Shayan Saeidi, and Ksenia Dolgaleva
Appl. Opt. 57(13) 3586-3591 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
    [Crossref]
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  3. B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  5. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
    [Crossref]
  6. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
    [Crossref] [PubMed]
  7. L. Jia, J. Song, T.-Y. Liow, X. Luo, X. Tu, Q. Fang, S.-C. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22(19), 23652–23660 (2014).
    [Crossref] [PubMed]
  8. L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
    [Crossref]
  9. A. E.-J. Lim, T.-Y. Liow, J. F. Song, C. Li, Q. Fang, X. G. Tu, N. Duan, K. K. Chen, R. P. C. Tern, C. Peng, B. W. Mun, M. N. Islam, J. S. Park, C. Subbu, and G.-Q. Lo, “Path to silicon photonics commercialization: 25Gb/s platform development in a CMOS manufacturing foundry line,” in Optical Fiber Communication Conference, paper Th2A.51 (2014).
    [Crossref]
  10. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  11. K. Goi, H. Kusaka, A. Oka, K. Ogawa, T.-Y. Liow, X. G. Tu, G.-Q. Lo, and D.-L. Kwong, “128-Gb/s DP-QPSK using low-loss monolithic silicon IQ modulator integrated with partial-rib polarization rotator,” in Optical Fiber Communication Conference, paper W1I.2 (2014).
    [Crossref]
  12. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).
  13. M. Sjödin, P. Johannisson, P. A. Andrekson, and M. Karlsson, “Linear and nonlinear crosstalk tolerance of polarization-switched QPSK and polarization-multiplexed QPSK,” in European Conference on Optical Communication and Exhibition, paper Mo.2.B.5 (2011).
    [Crossref]
  14. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  15. Y. Huang, S. Y. Zhu, H. J. Zhang, T.-Y. Liow, and G. Q. Lo, “Ultra-compact CMOS compatible TE-pass polarizer for silicon photonics,” in Optical Fiber Communication Conference, paper JTh1A.27 (2013).
    [Crossref]

2014 (2)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

L. Jia, J. Song, T.-Y. Liow, X. Luo, X. Tu, Q. Fang, S.-C. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22(19), 23652–23660 (2014).
[Crossref] [PubMed]

2013 (2)

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

2010 (4)

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Almeida, V. R.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Bakir, B. B.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Chen, Y.-K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

de Gyves, A. V.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Duan, N.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Fang, Q.

L. Jia, J. Song, T.-Y. Liow, X. Luo, X. Tu, Q. Fang, S.-C. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22(19), 23652–23660 (2014).
[Crossref] [PubMed]

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Fedeli, J.-M.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Jia, L.

Jia, L. X.

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Koh, S. C.

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Koh, S.-C.

Kwong, D. L.

Lim, E.-J.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Liow, T. Y.

Liow, T.-Y.

L. Jia, J. Song, T.-Y. Liow, X. Luo, X. Tu, Q. Fang, S.-C. Koh, M. Yu, and G. Lo, “Mode size converter between high-index-contrast waveguide and cleaved single mode fiber using SiON as intermediate material,” Opt. Express 22(19), 23652–23660 (2014).
[Crossref] [PubMed]

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Lipson, M.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

Lo, G.

Lo, G. Q.

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Lo, G.-Q.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Luo, X.

Luo, X. S.

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Lyan, P.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

McNab, S.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Orobtchouk, R.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Panepucci, R. R.

Porzier, C.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Roman, A.

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Song, J.

Song, J. F.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Tan, C. W.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Tu, X.

Tu, X. G.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Vlasov, Y.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yu, M.

Yu, M. B.

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T.-Y. Liow, J. F. Song, X. G. Tu, E.-J. Lim, Q. Fang, N. Duan, M. B. Yu, and G.-Q. Lo, “Silicon optical interconnect devices technologies for 40 Gb/s and Beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100108 (2014).

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. B. Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

L. X. Jia, T.-Y. Liow, J. F. Song, X. S. Luo, N. Duan, S. C. Koh, Q. Fang, M. B. Yu, and G. Q. Lo, “Compact optical polarization rotators based on an asymmetric silicon waveguide,” IEEE Photonics Technol. Lett. 25(22), 2229–2232 (2013).
[Crossref]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photonics Technol. Lett. 22(23), 1744–1746 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

A. E.-J. Lim, T.-Y. Liow, J. F. Song, C. Li, Q. Fang, X. G. Tu, N. Duan, K. K. Chen, R. P. C. Tern, C. Peng, B. W. Mun, M. N. Islam, J. S. Park, C. Subbu, and G.-Q. Lo, “Path to silicon photonics commercialization: 25Gb/s platform development in a CMOS manufacturing foundry line,” in Optical Fiber Communication Conference, paper Th2A.51 (2014).
[Crossref]

K. Goi, H. Kusaka, A. Oka, K. Ogawa, T.-Y. Liow, X. G. Tu, G.-Q. Lo, and D.-L. Kwong, “128-Gb/s DP-QPSK using low-loss monolithic silicon IQ modulator integrated with partial-rib polarization rotator,” in Optical Fiber Communication Conference, paper W1I.2 (2014).
[Crossref]

M. Sjödin, P. Johannisson, P. A. Andrekson, and M. Karlsson, “Linear and nonlinear crosstalk tolerance of polarization-switched QPSK and polarization-multiplexed QPSK,” in European Conference on Optical Communication and Exhibition, paper Mo.2.B.5 (2011).
[Crossref]

Y. Huang, S. Y. Zhu, H. J. Zhang, T.-Y. Liow, and G. Q. Lo, “Ultra-compact CMOS compatible TE-pass polarizer for silicon photonics,” in Optical Fiber Communication Conference, paper JTh1A.27 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The normalized transmission spectrum of a straight waveguide with SSC at the both ends. (b) The spectrum of the input light.
Fig. 2
Fig. 2 (a) Effective indices of the first two modes as a function of the waveguide width in the channel waveguide with height of 220 nm. (b) The schematic cross-section of the ideal and actual Si waveguide.
Fig. 3
Fig. 3 Calculated polarization rotation coefficient as a function of the angel of the sidewall and the width of the waveguide.
Fig. 4
Fig. 4 Schematics of the TE-polarized input light transmission in the straight waveguide with SSC at the both ends.
Fig. 5
Fig. 5 Zoomed-in image of the transmission spectrum in Fig. 1(a).
Fig. 6
Fig. 6 (a) Effective indices of the first four modes in the channel waveguide as a function of the waveguide width. (b) The effective index difference between the TE0 and TM0 modes as a function of the waveguide width.
Fig. 7
Fig. 7 The calculated transmission coefficient and rotation coefficient of the SSC. Solid and dashed lines are for sample 1 and sample 2 separately.
Fig. 8
Fig. 8 Transmission spectrum of the four different samples.
Fig. 9
Fig. 9 TEM images of the cross-section in a position of SSC. (a) Sample 1; (b) Sample 2.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E in =E( z 0 )=[ E 0 0 ],
[ τ iκ iκ τ ],
τ ( λ ) 2 +κ ( λ ) 2 =1.
E( z 1 )=[ τ iκ iκ τ ][ e α CTE 2 0 0 e α CTM 2 ][ E 0 0 ],
E( z 2 )=[ e i β TE L α TE 2 L 0 0 e i β TM L α TM 2 L ][ τ iκ iκ τ ][ e α CTE 2 0 0 e α CTM 2 ][ E 0 0 ],
E( z 3 )=[ e α CTE 2 0 0 e α CTM 2 ][ τ iκ iκ τ ][ e i β TE L α TE 2 L 0 0 e i β TM L α TM 2 L ][ τ iκ iκ τ ][ e α CTE 2 0 0 e α CTM 2 ][ E 0 0 ].
E( z 3 )=[ ( τ 2 e i β TE L α TE 2 L κ 2 e i β TM L α TM 2 L ) e α CTE E 0 iκτ( e i β TE L α TE 2 L + e i β TM L α TM 2 L ) e α TM + α TE 2 E 0 ],
P( z 3 )=[ P 0 e 2 α CTE ( τ 4 e 2 α TE L + κ 4 e 2 α TM L 2 τ 2 κ 2 e ( α TE + α TM )L cosΔθ ) P 0 e ( α CTM + α CTE ) 2 κ 2 τ 2 e ( α TE + α TM )L (1+cosΔθ) ],
Δθ= θ 1 θ 2 =( β TE β TM )L= 2π( n eftTE n effTM ) λ ,
P( z 3 )=[ P 0 e ( α CTM + α CTE ) 2 κ 2 τ 2 e ( α TE + α TM )L (1+cosΔθ) P 0 e 2 α CTM ( τ 4 e 2 α TM L + κ 4 e 2 α TE L 2 τ 2 κ 2 e ( α TE + α TM )L cosΔθ ) ].
Δλ= λ 2 L( n efftTE ( λ ) n efftTM ( λ )) .
P total ( z 3 )= P 0 e 2 α C ( τ 2 e α TE L + κ 2 e α TM L ) 2 ,
P( z 3 )=[ P 0 e 2 α C e 2αL ( τ 4 + κ 4 2 τ 2 κ 2 cosΔθ ) P 0 e 2 α C 2 κ 2 τ 2 e 2αL (1+cosΔθ) ],
P ( Z 3 ) TEmax P ( Z 3 ) TMmax = ( τ 2 + κ 2 ) 2 4 κ 2 τ 2 .
Crosstal k max = P ( Z 3 ) TEmin P ( Z 3 ) TMmax = ( τ 2 κ 2 ) 2 4 κ 2 τ 2 .

Metrics