Abstract

In recent years, following the miniaturization and integration of passive and active nanophotonic devices, thermal characterization of such devices at the nanoscale is becoming a task of crucial importance. The Scanning Thermal Microscopy (SThM) is a natural candidate for performing this task. However, it turns out that the SThM capability to precisely map the temperature of a photonic sample in the presence of light interacting with the sample is limited. This is because of the significant absorption of light by the SThM probe. As a result, the temperature of the SThM probe increases and a significant electrical signal which is directly proportional to the light intensity is obtained. As such, instead of measuring the temperature of the sample, one may directly measure the light intensity profile. While this is certainly a limitation in the context of thermal characterization of nanophotonic devices, this very property provides a new opportunity for optical near field characterization. In this paper we demonstrate numerically and experimentally the optical near field measurements of nanophotonic devices using a SThM probe. The system is characterized using several sets of samples with different properties and various wavelengths of operation. Our measurements indicate that the light absorption by the probe can be even larger than the light induced heat generation in the sample. The frequency response of the SThM system is characterized and the 3 dB frequency response was found to be ~1.5 kHz. The simplicity of the SThM system which eliminates the need for complex optical measurement setups together with its broadband wavelength of operation makes this approach an attractive alternative to the more conventional aperture and apertureless NSOM approaches. Finally, referring to its original role in characterizing thermal effects at the nanoscale, we propose an approach for characterizing the temperature profile of nanophotonic devices which are heated by light absorption within the device. This is achieved by spatially separating between the optical near field distribution and the SThM probe, taking advantage of the broader temperature profile as compared to the more localized light profile.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High resolution direct measurement of temperature distribution in silicon nanophotonics devices

Mor Tzur, Boris Desiatov, Ilya Goykhman, Meir Grajower, and Uriel Levy
Opt. Express 21(24) 29195-29204 (2013)

Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe

Liron Stern, Boris Desiatov, Ilya Goykhman, Gilad M. Lerman, and Uriel Levy
Opt. Express 19(13) 12014-12020 (2011)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
    [Crossref] [PubMed]
  3. W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62(21), 2535–2538 (1989).
    [Crossref] [PubMed]
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  5. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
    [Crossref]
  6. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
    [Crossref] [PubMed]
  7. J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
    [Crossref] [PubMed]
  8. A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [Crossref]
  9. A. Nesci, R. Dändliker, and H. P. Herzig, “Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,” Opt. Lett. 26(4), 208–210 (2001).
    [Crossref] [PubMed]
  10. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006).
    [Crossref] [PubMed]
  11. A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
    [Crossref]
  12. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
    [Crossref]
  13. A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [Crossref]
  14. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  15. “Principles of Nano Optics | Optics, optoelectronics and photonics,” http://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition .
  16. L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, and U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express 19(13), 12014–12020 (2011).
    [Crossref] [PubMed]
  17. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
    [PubMed]
  18. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
    [Crossref] [PubMed]
  19. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  20. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  21. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
    [Crossref] [PubMed]
  22. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref] [PubMed]
  23. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]
  24. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
    [Crossref]
  25. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [Crossref] [PubMed]
  26. K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
    [Crossref] [PubMed]
  27. R. Meckenstock, “Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range,” Rev. Sci. Instrum. 79(4), 041101 (2008).
    [Crossref] [PubMed]
  28. D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
    [Crossref] [PubMed]
  29. A. Majumdar, “Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci. 29(1), 505–585 (1999).
    [Crossref]
  30. B. Desiatov, I. Goykhman, and U. Levy, “Direct Temperature Mapping of Nanoscale Plasmonic Devices,” Nano Lett. 14(2), 648–652 (2014).
    [Crossref] [PubMed]
  31. M. Tzur, B. Desiatov, I. Goykhman, M. Grajower, and U. Levy, “High resolution direct measurement of temperature distribution in silicon nanophotonics devices,” Opt. Express 21(24), 29195–29204 (2013).
    [Crossref] [PubMed]
  32. M. Y. Grajower, L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Direct observation of electromagnetic near field in silicon nanophotonics devices using Scanning Thermal Microscopy (SThM) technique,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), p. SM2H.1.
  33. A. E. Klein, C. Schmidt, M. Liebsch, N. Janunts, M. Dobynde, A. Tünnermann, and T. Pertsch, “Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy,” Opt. Lett. 39(5), 1157–1160 (2014).
    [Crossref] [PubMed]

2014 (3)

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

B. Desiatov, I. Goykhman, and U. Levy, “Direct Temperature Mapping of Nanoscale Plasmonic Devices,” Nano Lett. 14(2), 648–652 (2014).
[Crossref] [PubMed]

A. E. Klein, C. Schmidt, M. Liebsch, N. Janunts, M. Dobynde, A. Tünnermann, and T. Pertsch, “Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy,” Opt. Lett. 39(5), 1157–1160 (2014).
[Crossref] [PubMed]

2013 (4)

M. Tzur, B. Desiatov, I. Goykhman, M. Grajower, and U. Levy, “High resolution direct measurement of temperature distribution in silicon nanophotonics devices,” Opt. Express 21(24), 29195–29204 (2013).
[Crossref] [PubMed]

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

2011 (4)

L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, and U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express 19(13), 12014–12020 (2011).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

2010 (1)

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

2008 (1)

R. Meckenstock, “Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range,” Rev. Sci. Instrum. 79(4), 041101 (2008).
[Crossref] [PubMed]

2007 (4)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
[Crossref]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (2)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

1999 (3)

A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

A. Majumdar, “Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci. 29(1), 505–585 (1999).
[Crossref]

1994 (1)

1993 (1)

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

1989 (1)

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62(21), 2535–2538 (1989).
[Crossref] [PubMed]

1984 (2)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Abashin, M.

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Ammann, E.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Baffou, G.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Beggs, D. M.

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Betzig, E.

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Brongersma, M. L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Chung, J.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Dändliker, R.

Day, J.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Deckert, V.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Dekhter, R.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Desiatov, B.

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Dobynde, M.

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
[Crossref]

Fainman, Y.

Fang, Z.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Goykhman, I.

Grajower, M.

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Hammiche, A.

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Hecht, A.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Hell, S. W.

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Herzig, H.

Herzig, H. P.

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Hwang, G.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Jain, P. K.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Janunts, N.

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Kador, L.

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62(21), 2535–2538 (1989).
[Crossref] [PubMed]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Khatchatouriants, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Kim, J.

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[Crossref] [PubMed]

Kim, K.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Klein, A. E.

Kuipers, L.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Kwon, O.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Lal, S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

le Feber, A.

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Lee, J. S.

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Lerman, G. M.

Levy, U.

Lewis, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Liebsch, M.

Majumdar, A.

A. Majumdar, “Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci. 29(1), 505–585 (1999).
[Crossref]

Manevitch, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Märki, I.

Martin, O. J. F.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Meckenstock, R.

R. Meckenstock, “Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range,” Rev. Sci. Instrum. 79(4), 041101 (2008).
[Crossref] [PubMed]

Moerner, W. E.

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62(21), 2535–2538 (1989).
[Crossref] [PubMed]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Nakagawa, W.

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Nesci, A.

Neumann, O.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Nordlander, P.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Pertsch, T.

Pohl, D. W.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Pollock, H. M.

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

Polman, A.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Price, D. M.

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

Quidant, R.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Reading, M.

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rotenberg, N.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Sánchez, A.

A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Schmidt, C.

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Sick, B.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Song, K.-B.

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[Crossref] [PubMed]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Stern, L.

Stipe, B. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strinkovski, A.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Taha, H.

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Tortora, P.

Tünnermann, A.

Tzur, M.

Urban, A. S.

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

Vaccaro, L.

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Wichmann, J.

Wild, U. P.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Xie, X.

A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zenobi, R.

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Zhen, Y.-R.

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

ACS Nano (3)

O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar Vapor Generation Enabled by Nanoparticles,” ACS Nano 7(1), 42–49 (2013).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “Quantitative Measurement with Scanning Thermal Microscope by Preventing the Distortion Due to the Heat Transfer through the Air,” ACS Nano 5(11), 8700–8709 (2011).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

A. Majumdar, “Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci. 29(1), 505–585 (1999).
[Crossref]

Appl. Phys. Lett. (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Int. J. Pharm. (1)

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, “Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis,” Int. J. Pharm. 192(1), 85–96 (1999).
[Crossref] [PubMed]

J. Chem. Phys. (1)

A. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Micron (1)

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007).
[Crossref] [PubMed]

Nano Lett. (4)

Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle,” Nano Lett. 13(4), 1736–1742 (2013).
[PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Direct Temperature Mapping of Nanoscale Plasmonic Devices,” Nano Lett. 14(2), 648–652 (2014).
[Crossref] [PubMed]

Nano Today (1)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).
[Crossref]

Nat. Biotechnol. (1)

A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, “Near-field optics: from subwavelength illumination to nanometric shadowing,” Nat. Biotechnol. 21(11), 1378–1386 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

A. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

A. Sánchez, L. Novotny, and X. Xie, “Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62(21), 2535–2538 (1989).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Meckenstock, “Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range,” Rev. Sci. Instrum. 79(4), 041101 (2008).
[Crossref] [PubMed]

Science (1)

E. Betzig and R. J. Chichester, “Single Molecules Observed by Near-Field Scanning Optical Microscopy,” Science 262(5138), 1422–1425 (1993).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Other (2)

“Principles of Nano Optics | Optics, optoelectronics and photonics,” http://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition .

M. Y. Grajower, L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Direct observation of electromagnetic near field in silicon nanophotonics devices using Scanning Thermal Microscopy (SThM) technique,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), p. SM2H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of the experimental setup. Lensed fibers are used to couple light into and out of a silicon nanowaveguide. In parallel, the SThM probe is scanning the waveguide and the resonator. The signal is recorded by a computer. The insert (right of the Micro-Ring resonator) provides SEM images of the SThM probe.
Fig. 2
Fig. 2 (a,b) - Thermal (SThM) and NSOM signals collected from a doped silicon nano waveguide, respectively. The waveguide is bended, with a bending radius of 50 µm. (c,d) Magnified image of panels a,b respectively.All scale bars are in arbitrary units.
Fig. 3
Fig. 3 SThM images of (a) undoped silicon waveguide, (b,c) undoped silicon micro-ring resonator off and on resonance respectively, (d) S i 3 N 4 micro-disk resonator at the wavelength of 980nm, (e,f) a section of a S i 3 N 4 micro-disc resonator at wavelengths off and on resonance respectively. All images exept panel d were measured at the telecom band around 1550 nm. The green arrow represents the light propagation direction. The Q-factor of both resonators are ~30,000 @1550nm. Beating is clearly observed only in panel a because of the better spatial resolution used for this result (note the difference in scale bars).
Fig. 4
Fig. 4 a) Schematics of direct heat measurement using Au nano wire. An AC voltage source is connected to the nanowire through two contact pads. b) Illustration of the SThM probe above the facet of an optical fiber for the purpose of directly measuring light distribution by the SThM probe.
Fig. 5
Fig. 5 light induced heat measurement (blue) at the SThM probe for the wavelength of 1550nm and direct temperature heating (purple) measurements of the nanowire. The voltage source is modulated at 352Hz (and thus heat generation is modulated at double the frequency, i.e. 704Hz) and the laser is also modulated at 704Hz. The obtained slopes are 0.0298±8x 10 4 [nA/mW] and 0.0298±8x 10 4 [nA/mW] for the light induced heating and the direct heat measurements, respectively. One should note that this comparison was performed under different measurement conditions and thus should only be considered as a general guidline rather than an absolute conclusion.
Fig. 6
Fig. 6 SThM probe signal vs. incident optical power for four different wavelengths. The measured slopes are 1.36 ± 0.027[nA/mW], 7.31 ± 0.025[nA/mW], 10 ± 0.014[nA/mW], 34 ± 0.012[nA/mW] for the wavelengths of 2480nm, 1550nm, 1300nm and 980nm respectively. Modulation frequency is 704Hz.
Fig. 7
Fig. 7 - Frequency response of the SThM probe. The system shows a typical response of a low pass filter wirh a 3dB modulation frequency of ~1.5 kHz.
Fig. 8
Fig. 8 Calculated absorption cross section [ W m 3 ] of 1.55µm in plane polarized light for the case of (a) an undoped and (b) an extremely highly doped ( ~N h =8.5x 10 19 cm 3 ) silicon nano waveguide with a metallic probe above it. The gap between the waveguide and the probe is 10nm. The probe is modeled as a 300 nm diameter Au sphere.
Fig. 9
Fig. 9 Comparison between temperature of the oxide layer due to light absorption inside the nano waveguide and light absorption by the SThM probe as a function of the oxide thickness above the nano waveguide. The Optical input power inside the nano waveguide is 10mW.

Metrics