Abstract

Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-transverse-mode waveguide-coupled deformed hexagonal resonator microlasers

Fu-Li Wang, Yue-De Yang, Yong-Zhen Huang, Zhi-Xiong Xiao, and Jin-Long Xiao
Appl. Opt. 57(25) 7242-7248 (2018)

Spectral engineering for circular-side square microlasers

Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, You-Zeng Hao, and Yong-Zhen Huang
Opt. Express 26(8) 9409-9414 (2018)

Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity

You-Zeng Hao, Fu-Li Wang, Min Tang, Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, and Yong-Zhen Huang
Photon. Res. 7(5) 543-548 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
    [Crossref]
  2. C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
    [Crossref]
  3. L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
    [Crossref]
  4. H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
    [Crossref]
  5. N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
    [Crossref]
  6. H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
    [Crossref]
  7. M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
    [Crossref]
  8. S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
    [Crossref]
  9. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  10. Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
    [Crossref] [PubMed]
  11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [Crossref] [PubMed]
  12. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001).
    [Crossref] [PubMed]
  13. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
    [Crossref]
  14. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
    [Crossref]
  15. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
    [Crossref]
  16. H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
    [Crossref]
  17. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
    [Crossref]
  18. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
    [Crossref]
  19. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
    [Crossref]
  20. Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
    [Crossref]
  21. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
    [Crossref] [PubMed]
  22. H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
    [Crossref]
  23. K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
    [Crossref]
  24. K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
    [Crossref]
  25. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  26. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
    [Crossref]
  27. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
    [Crossref]
  28. H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).
  29. C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
    [Crossref]
  30. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
    [Crossref]
  31. X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
    [Crossref]

2015 (1)

2014 (3)

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

2013 (1)

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

2011 (2)

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

2010 (2)

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

2009 (2)

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (1)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

2005 (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

2004 (4)

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

2003 (3)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

2002 (1)

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

2001 (2)

A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001).
[Crossref] [PubMed]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

1998 (1)

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

1992 (1)

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

1991 (1)

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

1990 (1)

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Akulova, Y.

An, K.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Baets, R.

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Barton, J. S.

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Chang, R. K.

Chapuran, T. E.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Che, K. J.

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Chen, Q.

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

Chen, X. F.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Chinone, N.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Coldren, C. W.

Coldren, L. A.

Cooper, J. M.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Courvoisier, F.

Di Cioccio, L.

Du, Y.

Fan, Z. C.

Fedeli, J. M.

Fish, G. A.

Fujiwara, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Goldstein, E. L.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Goodman, M. S.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Guo, W. H.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

Hattori, H. T.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Huang, L.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Huang, Y. P.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Huang, Y. Z.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Iga, R.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Ishii, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Jagadish, C.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Johansson, L.

Kano, F.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Kawaguchi, Y.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Kim, J.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Kim, S. B.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Kit, S.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Kitajima, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Klinga, T.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Kobrinski, H.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Kondo, Y.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Lagahe, C.

Lai, Y. C.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Lee, C. W.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Li, L. Y.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Li, S. M.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Li, W. B.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Li, W. J.

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

Liang, S.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Liu, B. W.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

Liu, D. Y.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Liu, X. J.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Long, H.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Lu, Q. Y.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

Lv, X. M.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Ma, X. W.

Menocal, S. G.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Moon, H. J.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Nilsson, S.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Nunoya, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Öberg, M.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Ojala, P.

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

Oohashi, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Poon, A. W.

Regreny, P.

Rojo Romeo, P.

Ryu, S. W.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Sakano, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Sato, T.

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

Seassal, C.

Sewell, P.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,” J. Opt. Soc. Am. B 21(10), 1792–1796 (2004).
[Crossref]

Sewell, P. D.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

Shi, Y. C.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Sim, J. S.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Sun, S. P.

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Suzuki, M.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Tan, H. H.

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

Tang, S.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Ting, D. K.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Tsuchiya, T.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Tur, M.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vecchi, M. P.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Verstuyft, S.

Wang, Q.

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

Wang, S. J.

Wang, W.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Xiao, J. L.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Xiao, Z. X.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Xu, K. Z.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Yang, Y. D.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Y. D. Yang, S. J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17(25), 23010–23015 (2009).
[Crossref] [PubMed]

Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008).
[Crossref] [PubMed]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Yoshikuni, Y.

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

Yu, L. J.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

Yuan, Z. S.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Zah, C.

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

Zhang, C.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Zhang, T. T.

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Zhu, H. L.

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Zhu, L. F.

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Zou, L. X.

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, X. W. Ma, X. M. Lv, B. W. Liu, and Y. Du, “High-speed direct-modulated unidirectional emission square microlasers,” J. Lightwave Technol. 33(4), 787–794 (2015).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Appl. Phys. Lett. (1)

K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances in metallically confined square-resonator microlasers,” Appl. Phys. Lett. 96(5), 051104 (2010).
[Crossref]

Chin. Phys. Lett. (1)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Comparison of free spectral range and quality factor for two-dimensional square and circular microcavities,” Chin. Phys. Lett. 21(1), 79–80 (2004).
[Crossref]

IEEE J. Quantum Electron. (4)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Optical modes in 2-D imperfect square and triangular microcavities,” IEEE J. Quantum Electron. 41(6), 857–862 (2005).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 39(9), 1106–1110 (2003).
[Crossref]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39(12), 1563–1566 (2003).
[Crossref]

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, B. W. Liu, J. L. Xiao, and Y. Du, “Mode characteristics of unidirectional emission AlGaInAs/InP square resonator microlasers,” IEEE J. Quantum Electron. 50(12), 981–989 (2014).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C. Zah, and S. G. Menocal., “Fast wavelength-switching of laser transmitters and amplifiers,” IEEE J. Sel. Areas Comm. 8(6), 1190–1202 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).
[Crossref]

N. Nunoya, H. Ishii, Y. Kawaguchi, R. Iga, T. Sato, N. Fujiwara, and H. Oohashi, “Tunable distributed amplification (TDA-) DFB laser with asymmetric structure,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1505–1512 (2011).
[Crossref]

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1358–1365 (2002).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microwave Wireless Compon. Lett. 11(5), 223–225 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (6)

C. W. Lee, Q. Wang, Y. C. Lai, D. K. Ting, and S. Kit, “Continuous-wave InP-InGaAsP microsquare laser—a comparison to microdisk laser,” IEEE Photonics Technol. Lett. 26(24), 2442–2445 (2014).
[Crossref]

M. Öberg, S. Nilsson, T. Klinga, and P. Ojala, “A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range,” IEEE Photonics Technol. Lett. 3(4), 299–301 (1991).
[Crossref]

H. T. Hattori, D. Y. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photonics Technol. Lett. 21(6), 359–361 (2009).
[Crossref]

H. Ishii, Y. Kondo, F. Kano, and Y. Yoshikuni, “A tunable distributed amplification DFB laser diode (TDA-DFB-LD),” IEEE Photonics Technol. Lett. 10(1), 30–32 (1998).
[Crossref]

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19(22), 1831–1833 (2007).
[Crossref]

J. Appl. Phys. (1)

K. J. Che and Y. Z. Huang, “Mode characteristics of metallically coated square microcavity connected with an output waveguide,” J. Appl. Phys. 107(11), 113103 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. J. Moon, S. P. Sun, and K. An, “Selective lasing of closed four bounce modes in a layered square microcavity,” Jpn. J. Appl. Phys. 43(4B4B), L533–L535 (2004).
[Crossref]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

X. J. Liu, Y. P. Huang, L. F. Zhu, Z. S. Yuan, W. B. Li, and K. Z. Xu, “Numerical determination of profile parameters for fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res. A 508(3), 448–453 (2003).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

C. Zhang, S. Liang, H. L. Zhu, and W. Wang, “Tunable DFB lasers integrated with Ti thin film heaters fabricated with a simple procedure,” Opt. Laser Technol. 54(32), 148–150 (2013).
[Crossref]

Opt. Lett. (2)

Semicond. Sci. Technol. (1)

L. Y. Li, S. Tang, L. Huang, T. T. Zhang, S. M. Li, Y. C. Shi, and X. F. Chen, “Experimental demonstration of a low-cost tunable semiconductor DFB laser for access networks,” Semicond. Sci. Technol. 29(9), 095002 (2014).
[Crossref]

Other (1)

H. Long, Y. Z. Huang, Y. D. Yang, L. X. Zou, J. L. Xiao, and Z. X. Xiao, “Mode and modulation characteristics for microsquare lasers with a vertex output waveguide,” Sci. Chin. Phys, Mech Astron. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The structure of the square microresonator used in the 2D FDTD simulation, (b) mode intensity spectra and (c) high resolution intensity spectra around 1530 nm for the 17.8-μm-side-length square microresonators with and without the output waveguide.
Fig. 2
Fig. 2 Mode field distributions |Hz| for (a) TEo,(52,54) and (b) TEo,(51,55) in the 17.8-μm-side-length square microresonator .
Fig. 3
Fig. 3 Mode field distributions |Hz| for TEo,(51,55) at (a) r = 0 and (b) r = 1 μm, and TEe,(50,55) at (c) r = 0 and (d) r = 1 μm in the 17.8-μm-side-length square microresonator with the 1.4-μm-width output waveguide.
Fig. 4
Fig. 4 Mode Q factors versus the output waveguide width for TEo,(52,56), TEo,(51,55), TEo,(50,54) and TEo,(49,53) at (a) g = 0 and (b) g = 2 cm−1 in the square microresonator with the side length of 17.8 μm.
Fig. 5
Fig. 5 (a) Output power and applied voltage versus CW injection current at 291K and 298K, (b) lasing spectra at different currents at 298 K, and (c) lasing wavelength and SMSR versus the current at 298 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.8 μm.
Fig. 6
Fig. 6 Lasing spectra at different currents at 298 K for the square microlaser with the side length of 17.8 μm and the output waveguide width of (a) 1.6 μm and (b) 2 μm, respectively.
Fig. 7
Fig. 7 (a) Output power and applied voltage versus CW injection current at 291 and 298K, (b) lasing spectra at different currents at 291 K, and (c) lasing mode wavelength and SMSR versus the current at 291 K, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.
Fig. 8
Fig. 8 (a) Lasing spectra at different TEC temperatures at 12 mA, and (b) lasing mode wavelength and SMSR versus the TEC temperature at 12 mA, for the square microlaser with the side length of 17.8 μm and the output waveguide width of 1.4 μm.

Tables (2)

Tables Icon

Table 1 Mode wavelengths and Q factors for the square microresonator with a midpoint output waveguide at a = 17.8 μm and w = 1.4 μm

Tables Icon

Table 2 Mode Q factors for the square microresonators with round corners

Metrics