Abstract

We demonstrate a novel optical method for the detection and differentiation between erythrocytes and leukocytes that uses amplitude and phase information provided by optical coherence tomography (OCT). Biological cells can introduce significant phase modulation with substantial scattering anisotropy and dominant forward-scattered light. Such physical properties may favor the use of a trans-illumination imaging technique. However, an epi-illumination mode may be more practical and robust in many applications. This study describes a new way of measuring the phase modulation introduced by flowing microobjects. The novel part of this invention is that it uses the backscattered signal from the substrate located below the flowing/moving objects. The identification of cells is based on phase-sensitive OCT signals. To differentiate single cells, a custom-designed microfluidic device with a highly scattering substrate is introduced. The microchannels are molded in polydimethylsiloxane (PDMS) mixed with titanium dioxide (TiO2) to ensure high scattering properties. The statistical parameters of the measured signal depend on the cells’ features, such as their size, shape, and internal structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Classification of biological micro-objects using optical coherence tomography: in silico study

Paweł Ossowski, Maciej Wojtkowski, and Peter RT Munro
Biomed. Opt. Express 8(8) 3606-3626 (2017)

Ocular anterior chamber blood cell population differentiation using spectroscopic optical coherence tomography

Ruobing Qian, Wei-feng Huang, Ryan P. McNabb, Kevin C. Zhou, Qing H. Liu, Anthony N. Kuo, and Joseph A. Izatt
Biomed. Opt. Express 10(7) 3281-3300 (2019)

Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography

Danuta M. Bukowska, Ladislav Derzsi, Szymon Tamborski, Maciej Szkulmowski, Piotr Garstecki, and Maciej Wojtkowski
Opt. Express 21(20) 24025-24038 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
    [Crossref] [PubMed]
  2. W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
    [Crossref]
  3. H. M. Shapiro, Practical flow cytometry (John Wiley & Sons, 2005).
  4. W. H. Coulter, “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. Electron. Conf.12, 1034–1040 (1956).
  5. V. V. Tuchin, Advanced Optical Flow Cytometry: Methods and Disease Diagnoses (John Wiley & Sons, 2011).
  6. T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
    [Crossref] [PubMed]
  7. K. M. Jacobs, J. Q. Lu, and X.-H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
    [Crossref] [PubMed]
  8. K. Dong, Y. Feng, K. M. Jacobs, J. Q. Lu, R. S. Brock, L. V. Yang, F. E. Bertrand, M. A. Farwell, and X.-H. Hu, “Label-free classification of cultured cells through diffraction imaging,” Biomed. Opt. Express 2(6), 1717–1726 (2011).
    [Crossref] [PubMed]
  9. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).
    [Crossref] [PubMed]
  10. Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “In vivo cytometry using two-photon autofluorescence microscopy,” in Biomedical Optics and 3-D Imaging, OSA Technical Digest, (Optical Society of America, 2012), BSu3A. 20.
  11. L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. Opt. Express 3(6), 1455–1464 (2012).
    [Crossref] [PubMed]
  12. S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
    [Crossref] [PubMed]
  13. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [Crossref] [PubMed]
  14. H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
    [Crossref] [PubMed]
  15. H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
    [Crossref] [PubMed]
  16. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  17. E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
    [Crossref] [PubMed]
  18. E. Schonbrun and G. Di Caprio, “Differentiating neutrophils using the optical coulter counter,” in Biomedical Optics (BiOS)2015, (SPIE, 2015), 933614–1-6.
  19. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  20. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [Crossref] [PubMed]
  21. L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
    [Crossref]
  22. Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
    [Crossref] [PubMed]
  23. S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
    [Crossref] [PubMed]
  24. J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
    [Crossref]
  25. J. Lauri, M. Wang, M. Kinnunen, and R. Myllylä, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” in Biomedical Optics (BiOS)2008, (SPIE, 2008), 68630F–68630F–68638.
  26. D. M. Bukowska, L. Derzsi, S. Tamborski, M. Szkulmowski, P. Garstecki, and M. Wojtkowski, “Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography,” Opt. Express 21(20), 24025–24038 (2013).
    [Crossref] [PubMed]
  27. J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
    [Crossref] [PubMed]
  28. S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
    [Crossref] [PubMed]
  29. C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
    [Crossref] [PubMed]
  30. P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
    [Crossref] [PubMed]
  31. A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
    [Crossref] [PubMed]
  32. H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
    [Crossref] [PubMed]
  33. W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
    [Crossref] [PubMed]
  34. D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
    [Crossref] [PubMed]
  35. M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
    [Crossref] [PubMed]
  36. L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
    [Crossref] [PubMed]
  37. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
    [Crossref] [PubMed]
  38. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
    [Crossref] [PubMed]
  39. Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
    [Crossref] [PubMed]
  40. D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  41. S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
    [Crossref] [PubMed]
  42. B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
    [Crossref] [PubMed]
  43. J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
    [Crossref] [PubMed]
  44. A. Hoekstra, V. Maltsev, and G. Videen, Optics of Biological Particles:Proceedings of the NATO Advanced Research Workshop on Fluorescence and Other Optical Properties of Biological Particles for Biological Warfare Agent Sensors,Novosibirsk, Russia,3–6 October 2005 (Springer Science & Business Media, 2007), Vol. 238.
  45. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  46. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [Crossref] [PubMed]
  47. G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050–1061 (2014).
    [Crossref] [PubMed]
  48. P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
    [Crossref]
  49. G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39(17), 5228–5231 (2014).
    [Crossref] [PubMed]
  50. S. Schneider, M. Lauermann, C. Weimann, W. Freude, and C. G. Koos, “Silicon Photonic Optical Coherence Tomography System,” in CLEO: Applications and Technology, (Optical Society of America, 2014), ATu2P. 4.
  51. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
    [Crossref] [PubMed]
  52. M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
    [Crossref] [PubMed]
  53. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [Crossref] [PubMed]
  54. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [Crossref] [PubMed]
  55. O. Carvalho, B. Clairac, M. Benderitter, and L. Roy, “Statistical speckle study to characterize scattering media: use of two complementary approaches,” Opt. Express 15(21), 13817–13831 (2007).
    [Crossref] [PubMed]
  56. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12(1), 176–188 (2004).
    [Crossref] [PubMed]
  57. A. Dyrnaev, “A method of segmenting leukocytes on images of blood smears,” J. Opt. Technol. 79(11), 708–711 (2012).
    [Crossref]

2015 (5)

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

2014 (4)

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
[Crossref]

G. Yurtsever, B. Považay, A. Alex, B. Zabihian, W. Drexler, and R. Baets, “Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography,” Biomed. Opt. Express 5(4), 1050–1061 (2014).
[Crossref] [PubMed]

G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39(17), 5228–5231 (2014).
[Crossref] [PubMed]

2013 (4)

D. M. Bukowska, L. Derzsi, S. Tamborski, M. Szkulmowski, P. Garstecki, and M. Wojtkowski, “Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography,” Opt. Express 21(20), 24025–24038 (2013).
[Crossref] [PubMed]

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

2012 (8)

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
[Crossref] [PubMed]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

L. Golan, D. Yeheskely-Hayon, L. Minai, E. J. Dann, and D. Yelin, “Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,” Biomed. Opt. Express 3(6), 1455–1464 (2012).
[Crossref] [PubMed]

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).
[Crossref] [PubMed]

A. Dyrnaev, “A method of segmenting leukocytes on images of blood smears,” J. Opt. Technol. 79(11), 708–711 (2012).
[Crossref]

2011 (5)

K. Dong, Y. Feng, K. M. Jacobs, J. Q. Lu, R. S. Brock, L. V. Yang, F. E. Bertrand, M. A. Farwell, and X.-H. Hu, “Label-free classification of cultured cells through diffraction imaging,” Biomed. Opt. Express 2(6), 1717–1726 (2011).
[Crossref] [PubMed]

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
[Crossref] [PubMed]

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

2010 (5)

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (4)

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

2007 (3)

O. Carvalho, B. Clairac, M. Benderitter, and L. Roy, “Statistical speckle study to characterize scattering media: use of two complementary approaches,” Opt. Express 15(21), 13817–13831 (2007).
[Crossref] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

2006 (2)

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

2004 (3)

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12(1), 176–188 (2004).
[Crossref] [PubMed]

2002 (1)

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ahn, C. H.

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

Ahn, Y.-C.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
[Crossref] [PubMed]

Albert, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Alex, A.

Bachman, M.

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

Baets, R.

Bajraszewski, T.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Bang, H.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Benderitter, M.

Bern, M. W.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Bertrand, F. E.

Bishara, W.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Bocklitz, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Brattke, K.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Brock, R. S.

Bukowska, D. M.

Burbano, J.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Cariou, J.

Carvalho, O.

Chan, R. Y. L.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Chang, J. K.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C. H.

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Chen, Z.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
[Crossref] [PubMed]

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

Cheng, X.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Cheong, W. C.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Chin, C. D.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Chin, S. Y.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Chiu, D. T.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Cho, S. H.

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Choi, J.-W.

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

Christopoulos, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Chung, C.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Cito, S.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Clairac, B.

Cortazar, B.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Coulter, W. H.

W. H. Coulter, “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. Electron. Conf.12, 1034–1040 (1956).

Czajkowski, J.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Dann, E. J.

Dasari, R. R.

de Wijs, K.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Demirci, U.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Depeursinge, C.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Derzsi, L.

Dhaliwal, D. K.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Di Caprio, G.

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

Dimitrov, S.

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

Dixon, M.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Dochow, S.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Dong, K.

Drexler, W.

Duarte, R. M.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Duker, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Dusa, A.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Dyrnaev, A.

Edwards, T.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Erlinger, A.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fabritius, T.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Farwell, M. A.

Feld, M. S.

Feng, Q.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Feng, S.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Feng, Y.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Frankowski, M.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Fu, E.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Fujimoto, J. G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Gabriele, M. L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Gan, A. T. L.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Garstecki, P.

Godin, J.

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Golan, L.

Gorczynska, I.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Gorocs, Z.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guern, Y.

Guo, L.

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

Han, D.-C.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Han, J.

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

Harper, M.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Hart, S. J.

C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
[Crossref] [PubMed]

Hebert, C. G.

C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Helton, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Henkel, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Higgins, J. M.

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

Höfemann, H.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

Hu, M.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Hu, X.-H.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, M. C.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Huck, M.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Ikeda, T.

Imaad, S. M.

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

Irimia, D.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Ishikawa, H.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Isikman, S. O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Jacobs, K. M.

Johnson, N. M.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Jung, W.

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
[Crossref] [PubMed]

Justman, J.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Kagemann, L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Kalkman, J.

Kasdan, H.

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

Katakis, I.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Kiesel, P.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Koay, E. S.-C.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Koehler, K. M.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Kowalczyk, A.

Koydemir, H. C.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Krafft, C.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Kulsharova, G.

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

Kummrow, A.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Kuo, J. S.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Kuss, C.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

Lagae, L.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Landenberger, B.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

Lauri, J.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Le Brun, G.

Le Jeune, B.

Leitgeb, R.

Leong, S. M.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Li, D.

Li, G.

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

Li, L.

Li, M.-H.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Lim, L. S.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, C.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Liu, G. L.

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

Lo, Y. H.

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Lo, Y.-H.

T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
[Crossref] [PubMed]

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

Looi, X. L.

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

Lord, N.

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

Lortrian, J.

Lu, J. Q.

Madou, M.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Malka, R.

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Martini, J.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Mayer, G.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

McLeod, E.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

Mei, Z.

T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
[Crossref] [PubMed]

Midorikawa, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Min, J.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Minai, L.

Mudanyali, O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Myllylä, R.

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

Nagashima, K.

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

Nelson, K.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Neugebauer, U.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Neukammer, J.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Niu, L.-G.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Ohl, C.-D.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

Ozcan, A.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Packirisamy, M.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
[Crossref]

Pallares, J.

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Peumans, P.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Piederrière, Y.

Popescu, G.

Popov, V.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Popp, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

Pottier, P.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
[Crossref]

Považay, B.

Preiser, P. R.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

Prodanov, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qiao, W.

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Qu, J. Y.

Quinto-Su, P. A.

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

Radzewicz, C.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Recht, M. I.

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

Rodriguez, W.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Rohrbach, A.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

Roy, L.

Sabath, D. E.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Sarik, J.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Schaak, D.

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

Schiro, P. G.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Schmidt, M.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Schonbrun, E.

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

Schueller, O. J.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Schuman, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sekine, K.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Sencan, I.

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Seo, S.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Shi, W.

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

Sia, S. K.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Srinivasan, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Stahl, R.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Strain, M. J.

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
[Crossref]

Su, T.-W.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Sugioka, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tai, Y.-C.

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

Tam, M. R.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Tamborski, S.

Targowski, P.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Terray, A.

C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
[Crossref] [PubMed]

Theisen, J.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Tompkins, R. G.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Toner, M.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Tsai, F.

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

Tsai, F. S.

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

Tseng, D.

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

Tuchscheerer, A.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

van Leeuwen, T. G.

Vanmeerbeeck, G.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Vercruysse, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Wadle, S.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

Wang, Z.

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Wasilewski, W.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Weigl, B. H.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Weiss, N.

Wen, Z.

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Wojtkowski, M.

D. M. Bukowska, L. Derzsi, S. Tamborski, M. Szkulmowski, P. Garstecki, and M. Wojtkowski, “Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography,” Opt. Express 21(20), 24025–24038 (2013).
[Crossref] [PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
[Crossref] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[Crossref] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[Crossref] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

Wollstein, G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Wong, J.

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

Wu, D.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Wu, S.-Z.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Wu, T.-F.

T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
[Crossref] [PubMed]

Xu, J.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging,” Opt. Lett. 37(13), 2490–2492 (2012).
[Crossref] [PubMed]

Xu, W.

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

Yager, P.

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Yamashita, K.

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

Yang, L. V.

Yeheskely-Hayon, D.

Yelin, D.

Yildirim, H.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

Yun, H.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

Yurtsever, G.

Zabihian, B.

Zamir, L.

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

Zeng, Y.

Zhao, M.

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

P. Pottier, M. J. Strain, and M. Packirisamy, “Integrated Microspectrometer with Elliptical Bragg Mirror Enhanced Diffraction Grating on Silicon on Insulator,” ACS Photonics 1(5), 430–436 (2014).
[Crossref]

Am. J. Ophthalmol. (1)

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref] [PubMed]

Anal. Chem. (5)

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T.-W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

C. G. Hebert, A. Terray, and S. J. Hart, “Toward Label-Free Optical Fractionation of Blood--Optical Force Measurements of Blood Cells,” Anal. Chem. 83(14), 5666–5672 (2011).
[Crossref] [PubMed]

M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler, D. E. Sabath, V. Popov, Q. Feng, and D. T. Chiu, “An automated high-throughput counting method for screening circulating tumor cells in peripheral blood,” Anal. Chem. 85(4), 2465–2471 (2013).
[Crossref] [PubMed]

Z. Wang, S. Y. Chin, C. D. Chin, J. Sarik, M. Harper, J. Justman, and S. K. Sia, “Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection,” Anal. Chem. 82(1), 36–40 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Wang, W. Xu, M. Bachman, G. Li, and Z. Chen, “Phase-resolved optical Doppler tomography for imaging flow dynamics in microfluidic channels,” Appl. Phys. Lett. 85(10), 1855–1857 (2004).
[Crossref]

S. H. Cho, W. Qiao, F. S. Tsai, K. Yamashita, and Y.-H. Lo, “Lab-on-a-chip flow cytometer employing color-space-time coding,” Appl. Phys. Lett. 97(9), 093704 (2010).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Cytometry A (2)

E. Schonbrun, R. Malka, G. Di Caprio, D. Schaak, and J. M. Higgins, “Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume,” Cytometry A 85(4), 332–338 (2014).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Flow Meas. Instrum. (1)

J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015).
[Crossref]

J. Biophotonics (1)

J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. Lo, “Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microfluidic flow cytometry chip,” J. Biophotonics 1(5), 355–376 (2008).
[Crossref] [PubMed]

J. Opt. Technol. (1)

Lab Chip (15)

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008).
[Crossref] [PubMed]

L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, “Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells,” Lab Chip 12(21), 4388–4396 (2012).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11(8), 1484–1490 (2011).
[Crossref] [PubMed]

X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7(2), 170–178 (2007).
[Crossref] [PubMed]

S. M. Imaad, N. Lord, G. Kulsharova, and G. L. Liu, “Microparticle and cell counting with digital microfluidic compact disc using standard CD drive,” Lab Chip 11(8), 1448–1456 (2011).
[Crossref] [PubMed]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip 12(17), 3177–3183 (2012).
[Crossref] [PubMed]

J. Martini, M. I. Recht, M. Huck, M. W. Bern, N. M. Johnson, and P. Kiesel, “Time encoded multicolor fluorescence detection in a microfluidic flow cytometer,” Lab Chip 12(23), 5057–5062 (2012).
[Crossref] [PubMed]

H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan, “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip 13(7), 1282–1288 (2013).
[Crossref] [PubMed]

H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, J. Burbano, E. McLeod, and A. Ozcan, “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab Chip 15(5), 1284–1293 (2015).
[Crossref] [PubMed]

T.-F. Wu, Z. Mei, and Y.-H. Lo, “Optofluidic device for label-free cell classification from whole blood,” Lab Chip 12(19), 3791–3797 (2012).
[Crossref] [PubMed]

P. A. Quinto-Su, C. Kuss, P. R. Preiser, and C.-D. Ohl, “Red blood cell rheology using single controlled laser-induced cavitation bubbles,” Lab Chip 11(4), 672–678 (2011).
[Crossref] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[Crossref] [PubMed]

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip 10(23), 3243–3254 (2010).
[Crossref] [PubMed]

W. Shi, L. Guo, H. Kasdan, and Y.-C. Tai, “Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay,” Lab Chip 13(7), 1257–1265 (2013).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Light Sci. Appl. (1)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Microelectron. Eng. (1)

W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, “Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies,” Microelectron. Eng. 132, 46–57 (2015).
[Crossref]

Microfluid. Nanofluidics (1)

S. Cito, Y.-C. Ahn, J. Pallares, R. M. Duarte, Z. Chen, M. Madou, and I. Katakis, “Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography,” Microfluid. Nanofluidics 13(2), 227–237 (2012).
[Crossref] [PubMed]

Nature (1)

P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, “Microfluidic diagnostic technologies for global public health,” Nature 442(7101), 412–418 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (8)

A. Hoekstra, V. Maltsev, and G. Videen, Optics of Biological Particles:Proceedings of the NATO Advanced Research Workshop on Fluorescence and Other Optical Properties of Biological Particles for Biological Warfare Agent Sensors,Novosibirsk, Russia,3–6 October 2005 (Springer Science & Business Media, 2007), Vol. 238.

J. Lauri, M. Wang, M. Kinnunen, and R. Myllylä, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” in Biomedical Optics (BiOS)2008, (SPIE, 2008), 68630F–68630F–68638.

Y. Zeng, J. Xu, D. Li, L. Li, Z. Wen, and J. Y. Qu, “In vivo cytometry using two-photon autofluorescence microscopy,” in Biomedical Optics and 3-D Imaging, OSA Technical Digest, (Optical Society of America, 2012), BSu3A. 20.

S. Schneider, M. Lauermann, C. Weimann, W. Freude, and C. G. Koos, “Silicon Photonic Optical Coherence Tomography System,” in CLEO: Applications and Technology, (Optical Society of America, 2014), ATu2P. 4.

E. Schonbrun and G. Di Caprio, “Differentiating neutrophils using the optical coulter counter,” in Biomedical Optics (BiOS)2015, (SPIE, 2015), 933614–1-6.

H. M. Shapiro, Practical flow cytometry (John Wiley & Sons, 2005).

W. H. Coulter, “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. Electron. Conf.12, 1034–1040 (1956).

V. V. Tuchin, Advanced Optical Flow Cytometry: Methods and Disease Diagnoses (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Example of phase modulation introduced by blood cells in in vivo OCT retinal imaging. a) Standard intensity OCT cross-sectional image of the human retina in the area of the optic disc. Characteristic intensity shadow localized below a blood vessel (barely visible) in an intensity cross-sectional image (vessel is indicated by the red circle and the shadow by the ellipse). b) Corresponding phase-sensitive OCT image. c) Enlarged region of interest from image (b) with indicated phase change signal and blood vessel position marked by red circle.
Fig. 2
Fig. 2 a) Intensity and phase change images of scattered light for static and moving objects. Signal enhancement (green arrows) in the static scattering base appears only for moving objects. For static particles, the constant signal coming from the scattering base is registered as an intensity with no enhancement, and there is no signal at all in the phase change (excluding phase noise). b) OCT images of differential intensity (up) and phase (down) M-scans of flowing blood cells. Enlarged sections of both images (selected rectangular ROIs) horizontally cover the entire modulation signal coming from a single blood cell, registered on both types of M-scans. Registered signals derived from cells in the region of the microchannel are barely visible (or completely invisible), unlike corresponding modulation signals located below them that are registered in the region of the scattering medium. The background signal coming from the scattering medium (titanium dioxide) in the upper M-scan image was numerically subtracted to obtain the differential intensity M-scan.
Fig. 3
Fig. 3 a) Complete optical system as a combination of OCT setup, microfluidic chip, and pumping system (syringe pump, syringe with sample, hoses, waste container). b) The measurement concept uses a light beam coming from the OCT system that is focused on the microchannel (cross section: 100 × 40 μm). The light backscattered from the static medium located beneath the channel is registered.
Fig. 4
Fig. 4 a) Schematic of the phase-sensitive Fd-OCT optical system with microfluidic setup. b) Scheme showing the post-processing of OCT data. The differential intensity M-scan is calculated by subtracting the constant background signal.
Fig. 5
Fig. 5 a) Schematic of microfluidic chip (plan view, side view, and cross section at the AA dotted line position) containing one of four normally existing sections of the entire microchannel structure with inlet/outlet channels (a = 300 μm) split into three microchannels (n = 3). b) Microscopic image of the microchannel structure section shown schematically in a) (n = 3). c) Microscopic image of the microchannel structure of a six-microchannel section (n = 6). d) Inlet/outlet region of the microchannel structure section (microscopic image).
Fig. 6
Fig. 6 Representative scatter plot of lysed normal whole blood. FSC (forward scatter, OX-axis) provides information on the relative size of the analyzed events, while SSC (side scatter, OY-axis) estimates the granularity. Granulocytes, monocytes, and lymphocytes are referred to as FSChigh/SSChigh, FSChigh/SSCmed, and FSClow/SSClow, respectively.
Fig. 7
Fig. 7 a) Obtaining the contrast top-middle phase-based parameter depicted for both RBC and WBC section (ROI) images. 2D FT magnitudes are depicted in grayscale. Corresponding ROI images (RBC and WBC) are also provided. Negative phase values are colored by blue levels while positive values are shown with red levels. b) Flowchart of the complete algorithm for the automatic differentiation of microobjects, e.g., blood cells. c) Algorithm for the automatic detection and localization of modulation signals in M-scan images. The circled numbers correspond to the flowchart blocks from b).
Fig. 8
Fig. 8 (a-c) Intensity and phase change images of M-scans. a) Two modulation signals coming from two different erythrocytes presented as an intensity and a phase change. b) Two modulation signals related to the WBC sample also demonstrated as intensity and phase change images. c) Enlarged sections of RBC and WBC phase change images, including entire signals transversally. 1D scatter plots as results of RBC and WBC discrimination are presented in d-f). d) Comparison of vertical speckle size [µm] parameter values (red dots indicate RBCs, black dots are WBCs). e) Comparison of standard deviations (intensity) [a.u.] parameter values. f) Comparison of standard deviations (phase) [rad] parameter values. Images (g-i) depict 2D scatter plots of two selected parameter values (2D combination of two histograms) for both RBCs (red dots) and WBCs (black dots), relatively. g) OX-axis: vertical speckle size and OY-axis: standard deviations (phase). h) Standard deviations (intensity) (OX-axis) vs. standard deviations (phase) (OY-axis). i) 2D scatter plot for two phase parameters: OX-axis: standard deviations (phase) vs. contrast top-middle [a.u.] (OY-axis). j) 3D scatter plot incorporating three parameters: OX-axis: standard deviations (intensity), OY-axis: standard deviations (phase), OZ-axis: vertical speckle size (RBCs: red dots, WBCs: black dots). Every 2D/3D scatter plot contains ∼70,000 points, and each point corresponds to a registered modulation signal coming from a single flowing cell (∼35,000 red dots for RBCs and ∼35,000 black dots for WBCs). 1D plots comprise 60,000 points each (30,000 red dots for RBCs and 30,000 black dots for WBCs).

Tables (1)

Tables Icon

Table 1 Parameters of Fd-OCT optical setup and related measurement protocols. OCT configuration includes Olympus 20X objective lens or Thorlabs 10X OCT Scan Lens.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PSD( I( x, y ) )= | { I( x, y ) } | 2 .
R I ( x,y )= 1 { PSD( I( x,y ) ) }. 
c I ( x,y )= 1 { | { I( x,y ) } | 2 } I( x,y ) 2 I ( x,y ) 2 I( x,y ) 2 , 
Γ= k=1 M1 ( i=1 2N ( x i k x k ¯ ) 2 / ( 2N1 ) )/( M1 ). 

Metrics