Abstract

We propose a tunable optical trapping system for nanoparticles based on generating standing wave by coupling two coherent beams into a ring resonator in opposite directions, respectively. The distributions of the mode field excited in three types of the ring-resonators-based trapping systems (microring, microdisk and slot ring) and the corresponding optical forces on the nanoparticles are calculated numerically. By the stability analysis in all directions, the smallest size of the particles could be stably trapped under the Brownian motion in the microring resonator is 61.2 nm when the input power is 10 mW, and the azimuthal orientations of the trapped particles are depended on the phase difference between the two input beams. On the other hand, the appearance of high order radial modes in the microdisk resonator enables a tunable radial trapping. To improve the trapping capability for the smaller particles, we utilize the slot ring resonator to make full use of the optical power and the trapping size could be minimized to ~29 nm when the input power is also set as 10 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible optical manipulation of ring resonator by frequency detuning and double-port excitation

Yong Geng, Tongtong Zhu, Haiyi Lv, Yongyin Cao, Fangkui Sun, and Weiqiang Ding
Opt. Express 24(14) 15863-15871 (2016)

Manipulation of metallic nanoparticle with evanescent vortex Bessel beam

Guanghao Rui, Xiaoyan Wang, and Yiping Cui
Opt. Express 23(20) 25707-25716 (2015)

Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field

Guanghao Rui, Xiaoyan Wang, Bing Gu, Qiwen Zhan, and Yiping Cui
Opt. Express 24(7) 7212-7223 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  3. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref] [PubMed]
  4. J. Zhu, Ş. K. Özdemir, and L. Yan, “Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper,” IEEE Photonics Tech. Lett. 23(18), 1346–1348 (2011).
    [Crossref]
  5. X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
    [Crossref] [PubMed]
  6. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
    [Crossref] [PubMed]
  7. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [Crossref] [PubMed]
  8. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  9. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [Crossref] [PubMed]
  10. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [Crossref] [PubMed]
  11. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  12. S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  13. A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
    [Crossref] [PubMed]
  14. H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
    [Crossref] [PubMed]
  15. M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  16. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
    [Crossref] [PubMed]
  17. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  18. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
    [Crossref] [PubMed]
  19. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  20. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  21. J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
    [Crossref] [PubMed]
  22. H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
    [Crossref] [PubMed]
  23. S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,” Opt. Express 18(20), 20638–20644 (2010).
    [Crossref] [PubMed]
  24. M. Soltani, J. T. Inman, M. Lipson, and M. D. Wang, “Electro-optofluidics: achieving dynamic control on-chip,” Opt. Express 20(20), 22314–22326 (2012).
    [Crossref] [PubMed]
  25. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
    [Crossref] [PubMed]
  26. P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
    [Crossref]
  27. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
    [Crossref] [PubMed]
  28. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
    [Crossref]
  29. J. T. Rubin and L. Deych, “On optical forces in spherical whispering gallery mode resonators,” Opt. Express 19(22), 22337–22349 (2011).
    [Crossref] [PubMed]
  30. M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric elec-tromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  31. A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
    [Crossref] [PubMed]
  32. J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
    [Crossref] [PubMed]
  33. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [Crossref] [PubMed]
  34. T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702–2712 (2007).
    [Crossref] [PubMed]

2014 (3)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

2013 (2)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

2012 (2)

M. Soltani, J. T. Inman, M. Lipson, and M. D. Wang, “Electro-optofluidics: achieving dynamic control on-chip,” Opt. Express 20(20), 22314–22326 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (7)

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
[Crossref] [PubMed]

S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,” Opt. Express 18(20), 20638–20644 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

2009 (5)

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

2008 (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

2007 (4)

T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702–2712 (2007).
[Crossref] [PubMed]

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric elec-tromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

2006 (1)

2005 (1)

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

Arnold, S.

Ashkin, A.

Benson, O.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Cai, H.

Chang, J. S.

Chaumet, P. C.

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, Y. F.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Chu, S.

Clements, W. R.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Davis, T. J.

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Deych, L.

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Dziedzic, J. M.

Eftekhari, F.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Eom, S. C.

Erickson, D.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Gong, Q.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Gordon, R.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Götzinger, S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Grujic, K.

He, L.

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Hellesø, O.

Hole, J.

Holler, S.

Houdré, R.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Huh, C.

Inman, J. T.

Jiang, X. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Jing, P.

P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Juan, M. L.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Keng, D.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Lee, S.

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Li, B. B.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, Y.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Lin, L. Y.

P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Lipson, M.

M. Soltani, J. T. Inman, M. Lipson, and M. D. Wang, “Electro-optofluidics: achieving dynamic control on-chip,” Opt. Express 20(20), 22314–22326 (2012).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Mandal, S.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Mazzei, A.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Menezes, L. S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Oveys, H.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric elec-tromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Özdemir, S. K.

J. Zhu, Ş. K. Özdemir, and L. Yan, “Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper,” IEEE Photonics Tech. Lett. 23(18), 1346–1348 (2011).
[Crossref]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
[Crossref] [PubMed]

Pang, Y. J.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Poon, A. W.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Rahmani, A.

Rubin, J. T.

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Serey, X.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Shao, L.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Shin, J. H.

Shopova, S. I.

Soltani, M.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

Sung, G. Y.

Suter, J. D.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Tong, L.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Vollmer, F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

Wang, J.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Wang, M. D.

Wang, P.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Wilkinson, J.

Wu, J.

P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Xiao, Y. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yan, L.

J. Zhu, Ş. K. Özdemir, and L. Yan, “Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper,” IEEE Photonics Tech. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Yang, A. H. J.

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Yang, L.

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yu, X. C.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Zhu, J.

J. Zhu, Ş. K. Özdemir, and L. Yan, “Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper,” IEEE Photonics Tech. Lett. 23(18), 1346–1348 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

J. Zhu, S. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18(23), 23535–23543 (2010).
[Crossref] [PubMed]

Zumofen, G.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Zurawsky, W.

ACS Photonics (1)

P. Jing, J. Wu, and L. Y. Lin, “Patterned Optical Trapping with Two-Dimensional Photonic Crystals,” ACS Photonics 1(5), 398–402 (2014).
[Crossref]

Adv. Mater. (2)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

IEEE Photonics Tech. Lett. (1)

J. Zhu, Ş. K. Özdemir, and L. Yan, “Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper,” IEEE Photonics Tech. Lett. 23(18), 1346–1348 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric elec-tromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Lab Chip (5)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

Nano Lett. (5)

S. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable Plasmonic Trapping Using a Gold Stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[Crossref] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and Transport Velocities for a Particle in a Slot Waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Opt. Express (8)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the on-chip localized optical trapping system. (b) The top-view of the ring resonator with the two bus waveguides. (c) The transmission spectra of the trapping system based on the microring resonator.
Fig. 2
Fig. 2 (a) The normalized | E z | distribution profile in x-z plane. (b) Normalized | E | distribution profile in x-y plane. (c), (d) and (e) are the optical gradient force on a particle of 100 nm in diameter along the azimuthal, radial and vertical directions, respectively. (f)-(h) are the corresponding potential energy of the trapped particle.
Fig. 3
Fig. 3 The relationship between the stability number and the particle diameter. The relationship between the input power and the minimal trapped particle size is shown in the inset.
Fig. 4
Fig. 4 The electric field amplitude distribution near the coupling gap when phase differences between the two input beams are (a) 0 (b) 0.5π, (c) 1π and (d) 1.5π.
Fig. 5
Fig. 5 (a) The top-view of the microdisk resonator with two bus waveguides. (b) The transmission spectra of the trapping system based on the microdisk resonator. (c) and (d) are the normalized electric field amplitude distribution in the microdisk resonators at the resonance wavelengths 996.2 nm 990.4 nm, respectively. The corresponding zoom-in-view images near the coupling gap are shown in the insets.
Fig. 6
Fig. 6 (a) and (b) are the zoom-in-view images of the insets of Fig. 6 (c) and (d), respectively. (c) and (d) are the optical gradient forces along vertical dash line in (a) and (b), respectively. (e) and (f) are the corresponding potential energy of the trapped particle.
Fig. 7
Fig. 7 (a) The normalized | E x | distribution profile in x-z plane. (b) Normalized | E | distribution profile in x-y plane. (c) and (d) are the optical gradient force along the azimuthal and vertical directions in the slot ring resonator, respectively. (e) and (f) are the corresponding potential energy of the trapped particle.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E φ ( φ ) = exp ( i m φ )
E r = { A J m ( k φ ( m , l ) n 1 r ) , r R 1 B J m ( k φ ( m , l ) n 2 r ) + C H m ( 1 ) ( k φ ( m , l ) n 2 r ) R 1 < r R 2 D H m ( 1 ) ( k φ ( m , l ) n 1 r ) r > R 2
E 1 ( φ ) = A cos ( ω t 2 π n 1 R φ λ + ϕ 1 ) E 2 ( φ ) = A cos ( ω t + 2 π n 1 R φ λ + ϕ 2 )
E ( φ ) = 2 A cos ( ω t + ϕ 1 + ϕ 2 2 ) cos ( 2 π n 1 R φ λ + ϕ 2 ϕ 1 2 )
φ n o d e = ( n π ϕ 2 ϕ 1 2 ) · λ 2 π n 1 R , n = 0 , 1 , 2 ,
F g r a d = π ε 0 | E | 2 R p 3 ( ε m ε ε m + 2 ε )
S = W t r a p k B T

Metrics